Semester Test 1402/160.734

MASSEY UNIVERSITY Institute of Fundamental Sciences **Mathematics**

160.734 Studies in Applied Differential Equations

Semester Test

Semester Two — September 2014

Time allowed: 55 minutes

This is a **closed book** examination.

Total marks: 40

Attempt all questions. There are 6 questions altogether. Be sure to read each question carefully.

Show all working for full credit.

- 1. Let $A = \begin{bmatrix} 8 & 8 \\ 0 & 8 \end{bmatrix}$.
 - (a) Compute e^{tA} (where $t \in \mathbb{R}$).
 - (b) Use your answer from (a) to state the solution to $\dot{x}(t) = Ax(t)$ with an arbitrary initial condition, $x(0) = x_0$.

[6+1=7 marks]

2. Let
$$B = \begin{bmatrix} -1 & 0 & 0 \\ -2 & 4 & 0 \\ 2 & 5 & -6 \end{bmatrix}$$
, and consider the ODE, $\dot{x}(t) = Bx(t)$, with $x(0) = x_0$.

Describe all $x_0 \in \mathbb{R}^3$ for which $x(t) \to 0$ as $t \to \infty$.

[6 marks]

1402/160.734 Semester Test

3. Consider the ODE, $\dot{x}(t) = f(x(t))$, with x(0) = 0.

Give a example of a *continuous* function $f: \mathbb{R} \to \mathbb{R}$ for which more than one value is possible for x(1).

Provide a brief explanation or calculation to justify your answer.

Hint: f cannot be Lipschitz.

[5 marks]

- 4. Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a C^1 function, and let x^* be an equilibrium of $\dot{x}(t) = f(x(t))$.
 - (a) Define what it means for x^* to be hyperbolic.
 - (b) Define what it means for x^* to be Lyapunov stable.

$$[3+3=6 \text{ marks}]$$

5. Consider the system

$$\dot{x} = 4 - y + x^2 ,$$

$$\dot{y} = 1 + 4x - y .$$

- (a) Find all equilibria.
- (b) Classify each equilibrium (as either a stable node, a stable focus, an unstable node, an unstable focus, a saddle, or none of the above).

$$[3 + 5 = 8 \text{ marks}]$$

6. Consider the system

$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = f(x, y) = \begin{bmatrix} -3x + y \\ 5xy - 4y^2 \end{bmatrix} .$$

The origin (0,0) is an equilibrium, and the eigenvalues of Df(0,0) are 0 and -3.

- (a) The centre manifold $W^c(0,0)$ is given by $y = 3x + \alpha x^2 + \mathcal{O}(x^3)$, for some $\alpha \in \mathbb{R}$. Determine the value of α .
- (b) On $W^c(0,0)$, we have $\dot{x} = \gamma x^2 + \mathcal{O}(x^3)$, for some $\gamma \in \mathbb{R}$. Determine the value of γ .
- (c) Is (0,0) asymptotically stable? Explain why or why not.

$$[4+2+2=8 \text{ marks}]$$