1701/160.734 Semester Test

MASSEY UNIVERSITY Institute of Fundamental Sciences Mathematics

160.734 Studies in Applied Differential Equations

Semester Test

Semester One — May 2017

Time allowed: 55 minutes

This is a **closed book** examination.

Total marks: 40

Attempt all questions. There are 6 questions altogether. Be sure to read each question carefully.

Show all working for full credit.

1. Compute \mathbf{e}^{tA} where $A=\begin{bmatrix}0&3&4\\0&0&5\\0&0&0\end{bmatrix}.$ HINT: A is nilpotent.

[5 marks]

2. Consider the linear system

$$\dot{x} = \alpha x - y ,$$

$$\dot{y} = (\alpha + 1)x .$$

Determine the values of $\alpha \in \mathbb{R}$ for which the equilibrium (x, y) = (0, 0) is Lyapunov stable but not asymptotically stable.

[6 marks]

1701/160.734 Semester Test

3. Consider the system

$$\dot{x} = (x+1)^2 - y$$
,
 $\dot{y} = x - y + 3$.

- (a) Find all equilibria of the system.
- (b) Classify each equilibrium as a stable node, a stable focus, an unstable node, an unstable focus, a saddle, or none of the above.

$$[3+6=9 \text{ marks}]$$

4. Suppose that \mathbf{x}^* is an equilibrium of a four-dimensional system $\dot{\mathbf{x}} = f(\mathbf{x})$ with

$$Df(\mathbf{x}^*) = \begin{bmatrix} -1 & 1 & 1 & -2 \\ 0 & 2 & 0 & 3 \\ 0 & 0 & 3 & -4 \\ 0 & 0 & 4 & 3 \end{bmatrix}.$$

What are the dimensions of $W^s(\mathbf{x}^*)$ and $W^u(\mathbf{x}^*)$? Provide at least one sentence of explanation.

[4 marks]

5. Consider the system

$$\begin{split} \dot{x} &= y + y^2 \;,\\ \dot{y} &= 2x - y + 3y^2 \;. \end{split}$$

For what values of a and b is the stable manifold of the origin $W^s(0,0)$ given by

$$y = ax + bx^2 + \mathcal{O}(x^3) ?$$

[10 marks]

6. Determine the value of μ at which

$$\dot{x} = \mu + \frac{1}{2}x - x^4 \; ,$$

has a saddle-node bifurcation.

[6 marks]