Surname:	
First name:	
Student ID:	

MASSEY UNIVERSITY Institute of Fundamental Sciences

160.734 (Studies in Applied Differential Equations)

Mid-Semester Test

Semester Two, 2018

Time allowed: 55 minutes

Total marks: 40

This test is **closed book**. Calculators are permitted.

Attempt all questions. There are 5 questions altogether.

Show all working to receive full credit. A blank page is provided at the back of the test, in case you need extra space.

1	/10
2	
3	/11
4	/4
5	
Total.	/40

- 1. Let $A = \begin{bmatrix} 2 & 0 \\ 3 & 2 \end{bmatrix}$.
 - (a) Compute e^{tA} .

(b) Suppose $\mathbf{x}(t)$ is the solution to $\dot{\mathbf{x}} = A\mathbf{x}$ for which $\mathbf{x}(1) = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$. Use your answer to (a) to determine $\mathbf{x}(2)$.

 $[5+5=10 \ marks]$

- 2. Let \mathbf{x}^* be a equilibrium of $\dot{\mathbf{x}} = f(\mathbf{x})$, where $f: \mathbb{R}^n \to \mathbb{R}^n$ is C^1 .
 - (a) Define what it means for \mathbf{x}^* to be Lyapunov stable.

(b) Define what it means for \mathbf{x}^* to be asymptotically stable.

[3+3=6 marks]

3. Let $\mathbf{x}^*(\mu)$ be an equilibrium of $\dot{\mathbf{x}} = f(\mathbf{x}; \mu)$, where $f : \mathbb{R}^4 \times \mathbb{R} \to \mathbb{R}^4$ is C^3 . Suppose $W^s(\mathbf{x}^*(\mu))$ is three-dimensional for $\mu < 0$, and that $\mathbf{x}^*(\mu)$ undergoes a Hopf bifurcation at $\mu = 0$.

What must be the dimension of $W^s(\mathbf{x}^*(\mu))$ for small $\mu > 0$? Why?

[4 marks]

4. Consider the system

$$\dot{x} = x^4 - 4x^3 + \mu.$$

(a) Determine the two values of μ for which the system has an equilibrium with a zero eigenvalue.

(b) Show that one of these is a saddle-node bifurcation and the other is not.

 $[4+5=9 \,\,\mathrm{marks}]$

1802 160.734 Mid-Semester Test

5. Consider the system

$$\dot{x} = x - 2y,$$

$$\dot{y} = x^2 - 5y^2,$$

for which (x,y) = (0,0) is a non-hyperbolic equilibrium.

(a) The centre manifold $W^c(0,0)$ can be written as $y = \alpha x + \beta x^2 + \mathcal{O}(x^3)$. Determine the values of α and β .

(b) On $W^c(0,0)$ we have $\dot{x} = \gamma x^2 + \mathcal{O}(x^3)$. Determine the value of γ .

(c) Is (x, y) = (0, 0) asymptotically stable? Why or why not?

 $[7+2+2=11\ marks]$

1802 160.734 Mid-Semester Test

Use this page if you need extra space to answer the questions. If you use it, make a note on the page of the question that you have done so, and clearly indicate here which question you are answering.