Surname:	
First name:	
Student ID:	

MASSEY UNIVERSITY Institute of Fundamental Sciences

160.734 (Studies in Applied Differential Equations)

Mid-Semester Test Solutions

Semester Two, 2018

Time allowed: 55 minutes

Total marks: 40

This test is **closed book**. Calculators are permitted.

Attempt all questions. There are 5 questions altogether.

Show all working to receive full credit. A blank page is provided at the back of the test, in case you need extra space.

1	/10
2	
3	/11
4	/4
5	
Totalı	/40

- 1. Let $A = \begin{bmatrix} 2 & 0 \\ 3 & 2 \end{bmatrix}$.
 - (a) Compute e^{tA} .

We have A=2I+N where $N=\begin{bmatrix}0&0\\3&0\end{bmatrix}$. Notice N^2 is the zero matrix, so N is nilpotent and $\mathrm{e}^{tN}=I+tN$. Notice 2I and N commute, thus

$$e^{tA} = e^{2tI}e^{tN}$$
$$= e^{2t}(I + tN)$$
$$= e^{2t}\begin{bmatrix} 1 & 0\\ 3t & 1 \end{bmatrix}.$$

(b) Suppose $\mathbf{x}(t)$ is the solution to $\dot{\mathbf{x}} = A\mathbf{x}$ for which $\mathbf{x}(1) = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$. Use your answer to (a) to determine $\mathbf{x}(2)$.

We have $\mathbf{x}(t) = e^{tA}\mathbf{x}(0)$, for all $t \in \mathbb{R}$. So $\mathbf{x}(1) = e^{A}\mathbf{x}(0)$ and $\mathbf{x}(2) = e^{2A}\mathbf{x}(0)$, hence

$$\mathbf{x}(2) = e^{2A}e^{-A}\mathbf{x}(1)$$

$$= e^{A}\mathbf{x}(1)$$

$$= e^{2}\begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}\begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

$$= \begin{bmatrix} 3 e^{2} \\ 13 e^{2} \end{bmatrix}.$$

[5 + 5 = 10 marks]

- 2. Let \mathbf{x}^* be a equilibrium of $\dot{\mathbf{x}} = f(\mathbf{x})$, where $f: \mathbb{R}^n \to \mathbb{R}^n$ is C^1 .
 - (a) Define what it means for \mathbf{x}^* to be Lyapunov stable.

That for all $\varepsilon > 0$ there exists $\delta > 0$ such that for all $\mathbf{x} \in B_{\delta}(\mathbf{x}^*)$ we have $\varphi_t(\mathbf{x}) \in B_{\varepsilon}(\mathbf{x}^*)$ for all $t \geq 0$.

(b) Define what it means for \mathbf{x}^* to be asymptotically stable.

That \mathbf{x}^* is Lyapunov stable and there exists $\eta > 0$ such that for all $\mathbf{x} \in B_{\eta}(\mathbf{x}^*)$ we have $\varphi_t(\mathbf{x}) \to \mathbf{x}^*$ as $t \to \infty$.

[3+3=6 marks]

3. Let $\mathbf{x}^*(\mu)$ be an equilibrium of $\dot{\mathbf{x}} = f(\mathbf{x}; \mu)$, where $f : \mathbb{R}^4 \times \mathbb{R} \to \mathbb{R}^4$ is C^3 . Suppose $W^s(\mathbf{x}^*(\mu))$ is three-dimensional for $\mu < 0$, and that $\mathbf{x}^*(\mu)$ undergoes a Hopf bifurcation at $\mu = 0$.

What must be the dimension of $W^s(\mathbf{x}^*(\mu))$ for small $\mu > 0$? Why?

For a Hopf bifurcation, the dimension changes by two.

The dimension cannot change from 3 to 5 because the system is only four-dimensional. Thus the dimension must change from 3 to 1.

[4 marks]

4. Consider the system

$$\dot{x} = x^4 - 4x^3 + \mu.$$

(a) Determine the two values of μ for which the system has an equilibrium with a zero eigenvalue.

We have

$$\frac{\partial f}{\partial x} = 4x^3 - 12x^2 = 4x^2(x-3),$$

which equals 0 when x = 0 or x = 3.

Firstly solving $f(x; \mu) = 0$ using x = 0 gives $\mu = 0$.

Secondly solving $f(x; \mu) = 0$ using x = 3 gives $\mu = 27$.

(b) Show that one of these is a saddle-node bifurcation and the other is not.

We have

$$\frac{\partial^2 f}{\partial x^2} = 12x^2 - 24x.$$

Firstly observe $\frac{\partial^2 f}{\partial x^2}\big|_{x=0}=0$, thus $\mu=0$ is not a saddle-node bifurcation. Secondly observe $\frac{\partial^2 f}{\partial x^2}\big|_{x=3}=36\neq 0$, and $\frac{\partial f}{\partial \mu}\big|_{x=3}=1\neq 0$, thus $\mu=0$ is a saddle-node bifurcation.

5. Consider the system

$$\dot{x} = x - 2y,$$

$$\dot{y} = x^2 - 5y^2,$$

for which (x, y) = (0, 0) is a non-hyperbolic equilibrium.

(a) The centre manifold $W^c(0,0)$ can be written as $y = \alpha x + \beta x^2 + \mathcal{O}(x^3)$. Determine the values of α and β .

We have
$$Df(0,0) = \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix}$$
.

The eigenvalue 0 has corresponding eigenvector $v = \begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix}$, thus $\alpha = \frac{1}{2}$. Thus on $W^c(0,0)$,

$$\dot{y} = x^2 - 5\left(\frac{1}{4}x^2 + \mathcal{O}(x^3)\right)$$

= $-\frac{1}{4}x^2 + \mathcal{O}(x^3)$.

Also, since $W^c(0,0)$ is invariant,

$$\dot{y} = \frac{dy}{dx}\dot{x}$$

$$= \left(\frac{1}{2} + 2\beta x + \mathcal{O}(x^2)\right) \left(x - 2\left(\frac{1}{2}x + \beta x^2 + \mathcal{O}(x^3)\right)\right)$$

$$= -\beta x^2 + \mathcal{O}(x^3).$$

By matching these we obtain $\beta = \frac{1}{4}$.

(b) On $W^c(0,0)$ we have $\dot{x} = \gamma x^2 + \mathcal{O}(x^3)$. Determine the value of γ .

We have

$$\dot{x} = x - 2\left(\frac{1}{2}x + \frac{1}{4}x^2 + \mathcal{O}(x^3)\right)$$
$$= -\frac{1}{2}x^2 + \mathcal{O}(x^3).$$

(c) Is (x, y) = (0, 0) asymptotically stable? Why or why not?

No, regardless of the dynamics on $W^c(0,0)$ the other eigenvalue of Df(0,0) is $\lambda=1$ which has positive real part so (0,0) is unstable.

$$[7+2+2=11 \text{ marks}]$$

Use this page if you need extra space to answer the questions. If you use it, make a note on the page of the question that you have done so, and clearly indicate here which question you are answering.