
Course Outline for 160.734: Studies in Applied Differential Equations

D.J.W. Simpson

SFS, Massey University
June 24, 2019

Instructor:

David Simpson
Office: ScB 3.07
Phone: 06 951 7618
Email: d.j.w.simpson@massey.ac.nz

Assessment:

I) Assignment 1 15%
Test 35%

II) Assignment 2 13%
Assignment 3 13%
Assignment 4 24%

• Each assignment will require the use of matlab
(or alternate but similar software if you prefer).

Important dates:

Assignment 1 due: Monday, August 5
Assignment 2 due: Monday, August 26
Assignment 3 due: Monday, September 23

Test: Monday, September 30
Assignment 4 due: Tuesday, October 29

Topics:

This is a course on dynamical systems. Mostly we
will study ODEs: ẋ = f(x) (parts 1–6); toward the
end we will study maps: xi+1 = f(xi) (parts 7–8).

1) Linear systems of ODEs; matrix exponentiation;
fundamental solution theorem; dealing with com-
plex eigenvalues and repeated eigenvalues; invari-
ant subspaces

2) Existence and uniqueness of solutions to ODEs;
Grönwall’s inequality; dependence on initial con-
ditions and parameters

3) Linearisation; hyperbolicity; stability; Lyapunov
functions; topological equivalence; Hartman-
Grobman theorem; ω-limit sets; Poincaré-
Bendixson theorem; attractors

4) Stable, unstable and centre manifolds and asso-
ciated theorems

5) Structural stability; saddle-node and Hopf bifur-
cations; extended centre manifolds; global bifur-
cations

6) Chaos; fractals; Poincaré maps

7) Linear maps; one-dimensional maps; saddle-
node, period-doubling and Neimark-Sacker bifur-
cations; logistic map

8) Symbolic dynamics; kneading theory; introduc-
tion to measure theory and ergodic theory

Reference material:

There is no set textbook; notes will be provided.
Massey library has several books that you could use
to aid your studies. Foremost is the excellent book
of Meiss [1] (515.39 Mei) which covers ODEs and is
pitched at our level of detail and difficulty. Indeed
several sections of the notes follow this book quite
closely. Currently the library has one print copy at
the Albany campus (you can request it!).
Suitable books available on the Manawatu campus
(as of February 2017) are listed below. The parts
of the course that each book is particularly useful
for are listed in angled brackets.

• Alligood, Sauer, Yorke [2] (003.85 All) 〈4, 5, 6, 7〉

• Arrowsmith, Place [3] (515.352 Arr) 〈1, 3〉

• Chicone [4] (515.35 Chi) 〈2, 3, 4, 5〉

• Devaney [5] (515.352 Dev) 〈7〉

• Elaydi [6] (515.39 Ela) 〈7〉

• Glendinning [7] (515.355 Gle) 〈3, 4, 5, 7〉

• Hale, Koçak [8] (515.35 Hal) 〈3, 4, 5, 7〉

• Hirsch, Smale, Devaney [9] (515.35 Hir)
〈1, 2, 3, 6, 7〉

• Katok, Hasselblatt [10] (515.352 Kat) 〈4, 7, 8〉

• Lasota, Mackey [11] (003.75 Las) 〈8〉

• Martelli [12] (003.85 Mar) 〈7〉

• Perko [13] (515.355 Per) 〈1, 2, 3, 4, 5〉

• Robinson [14] (514.74 Rob) 〈6, 7〉

• Robinson [15] (515.39 Rob) 〈6, 7〉
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Figure 1: Time series of (1) for two slightly different initial conditions.

• Sternberg [16] (515.39 Ste) 〈7, 8〉

Some motivation:

In 1963 Ed Lorenz working at MIT introduced
the following three-dimensional system of ODEs to
model convection in the atmosphere [17]:

ẋ = σ(y − x),

ẏ = rx− y − xz,

ż = xy − bz.

(1)

The quantities x, y, and z are the variables of the
system — these are functions of time, t. They rep-
resent, in a simplified way, the strength and direc-
tions of the convection. The quantities σ, r, and b

are the parameters of the system — these are con-
stant in t. They represent physical properties of
the atmosphere.
The black curve in Fig. 1 is a time series of
the solution to (1) using the initial condition
(x(0), y(0), z(0)) = (10, 10, 30) and the parameter
values

σ = 10, r = 28, b =
8

3
. (2)

Fig. 2 shows a phase portrait of the same solution.
These were computed numerically using a finite dif-
ference scheme (ode45 in matlab).
We observe that the solution settles to oscillations
of rather irregular amplitude. This is the attractor

of the system and for the given parameter values
is unique. That is, for almost any initial condition
the solution settles to these irregular oscillations.
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Figure 2: A phase portrait of (1). The three dots
are equilibria of (1).

The dashed curve in Fig. 1 is a time se-
ries for the slightly different initial condition
(x(0), y(0), z(0)) = (10, 10, 30.0001). Remarkably,
the difference in the two time series eventually be-
comes large. This is not due to numerical error.
Nor does it occur before the two solutions become
close to the attractor. The large difference occurs
because on the attractor nearby solutions are lo-
cally repelling in spite of the fact that the attractor
is globally attracting.
This is the essence of chaos. For the purposes of
predicting future events, this is not just problem-
atic: it is a fundamental barrier to the limits of
our predictive power. From a practical viewpoint,
our knowledge of the initial condition must involve
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some error. Regardless of the accuracy of our math-
ematical model, chaos causes small measurement
errors to quickly grow into hopelessly large errors.
From [17]: In view of the inevitable inaccuracy

and incompleteness of weather observations, pre-

cise very-long range forecasting would seem to be

non-existent.

But all is not lost. It can be useful to study the
statistical properties of a chaotic attractor, and in-

deed chaos has many practical applications, such
as to robust and secure signal transmission.
For the theory that we will develop, the primary
goal is to be able to characterise “the dynamics” of
a given system. Often short-term transient dynam-
ics is not important to us, in which case it suffices
to determine the attractors of the system, describe
their basins of attraction, and understand how the
attractors change under parameter variation.
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