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Our journey towards a qualitative and quantitative understanding of systems of nonlinear dynamical
systems begins with linear ODEs. This is in part because many methods that we will encounter later in
the course involve approximating nonlinear ODEs with linear ones.

Unlike nonlinear ODEs, the solution to a system of linear ODEs can always be written down explicitly.
We will first see that eigenvalues and eigenvectors are central to achieving this, and sometimes we need
so-called generalised eigenvectors to obtain the general solution, but our main tool will be that of matrix
exponentiation.

These notes closely follow chapter 2 of Meiss [1].

1

Introduction
A system of linear ODEs can be written as
X = Ax, (1.1)

where x = x(t) € R", A is a real-valued n x n
matrix, and the dot denotes differentiation with
respect to time, t. Often we're interested in the
solution to (1.1) subject to x(0) = xq, where xg
is a given initial condition.

Suppose xg = v, where v is an eigenvector of A
corresponding to an eigenvalue A € R. In this
case the vector field at xp, namely Axg, points
in the same direction as v. Thus as the solution
x(t) evolves it continues to have direction v. We
can therefore write x(t) = ¢(t)v, wherec : R — R
with ¢(0) = 1. Substituting this into (1.1) leads
to
é(t)v = Ae(t)v,

and so
é(t) = Ae(t). (1.2)

The general solution to the one-dimensional
ODE (1.2) is
ct) = ke, (1.3)

where £ € R. Thus the solution to (1.1) with
x(0) = v is
x(t) = e M. (1.4)

Since (1.1) is linear, if x;(t) and x2(t) are solu-
tions to (1.1), then for any constants ¢; and ca,

the linear combination
c1x1(t) + caxa(t), (1.5)

is also a solution to (1.1).

e If we can find m linearly independent eigenvec-
tors, we can form an m-dimensional family of so-
lutions. Ideally we’d like an n-dimensional family
of solutions so that we can construct the partic-
ular solution for any initial condition xg.

Definition 1.1. An equilibrium of a nonlinear sys-
tem of ODEs, x = f(x), is a point x* for which
f(x*) = 0.

o If x(0) = x*, then x(t) = x* is a solution for all
t.

e Note that 0 (the zero vector or origin) is always
an equilibrium of the linear system (1.1).

2 Two-dimensional linear systems
e Here we study (1.1) in the case n = 2 and write
a b
il
The characteristic polynomial of A is
det(A\] — A) = X2 — 7A + 6, (2.1)

where
T=a+d, 0 = ad — bc, (2.2)



are the trace and determinant of A. The eigen-
values of A are

T+VT2 —45

At = 5

(2.3)

e As long as Ay # A_, we can be sure that Ay
and A_ have linearly independent eigenvectors

v+ and v_ (possibly complex-valued). In this
case the linear combination
x(t) = cye™luy et tu_ (2.4)

where c;,c_ € C, represents the most general
solution to (1.1).

Exercise 2.1. If A\, and A_ are complex-valued,
then v4 and v_ are also complex-valued. Since A is

real-valued, \_ = Ay and v_ = v, (where bars de-
note complex conjugation). Show that in this case
if we set ¢ = ¢4, then (2.4) will be real-valued

(which is what we want).

e Since the eigenvalues are completely determined
by 7 and J, we can classify the basic properties
of (1.1) in two dimensions just from the values
of 7 and 0. However, with an eye to our eventual
study of nonlinear systems, we say that we are
classifying, not the system (1.1), but the equilib-
rium x = 0.

i) If7'>Oand0<5<%,then0<x\_<)\+.
Here both terms in (2.4) blow up as t — oo
and we refer to 0 as an unstable node.

ii) IfT<Oand0<5<§,then)\_<)\+<0.
Here both terms in (2.4) tend to zero as t — oo
and we refer to 0 as a stable node.

iii) If 6 < 0, then A\_ < 0 < Ay. Here eM? — oo
whereas e’* — 0, as t — oo and we refer to 0
as a saddle.

iv) If 7 > 0 and 6 > 7742, then Ay and A_ are
complex-valued with positive real parts. Here
solutions (2.4) spiral outwards as t increases

and we refer to 0 as an unstable focus.

v) If 7 < 0and § > %, then Ay and A_ are
complex-valued with negative real parts. Here
solutions (2.4) spiral inwards as ¢ increases and

we refer to 0 as a stable focus.

e If 7 =0and § > 0, then \y = +iV/J are purely
imaginary. Here solutions (2.4) form ellipses and
we refer to 0 as a centre.

e In other cases if we need to refer to 0 as some-
thing we can just say it is degenerate.

o If § = "742, then A has a repeated eigenvalue.
The basic structure of the solutions depends on
whether or not A has one or two linearly inde-

pendent eigenvectors (usually there is just one).

e If ) =0, then A has a zero eigenvalue.

Exercise 2.2. Show that if A has a zero eigenvalue
then the corresponding eigenvector generates a line
of equilibria.

3 Matrix exponentiation

Here we show how to take e to the power of a ma-
trix. In the next section we use this to solve the
linear system (1.1) in a concise manner.

Definition 3.1. Let A be a real-valued n x n ma-

trix. Then -
k
A A
k-

k=0

(3.1)

e The following result follows easily from the above
definition.

Lemma 3.1. Let

dy
D=
dn,
be a diagonal matriz. Then
e
eP = . (3.2)
efn

e Given numbers x and y, we would happily
rewrite the product e®e¥ as e*™¥. However, for
matrices we cannot always do this. The next re-
sult tells us that we can do this if the matrices
commute (for an outline of a proof of this result
see [1], chapter 2, exercise 6).

Lemma 3.2. If AB = BA, then ‘el = 415,



Exercise 3.1. Let A = [_01 (1)] Show that for
any t € R,
oA _ cos(t)  sin(t)
| —sin(t) cos(t)|

a

Exercise 3.2. Let A = b

Z], where a,b € R.
Show that for any ¢ € R,

olA at[ cos(bt)

sin(bt)
— sin(bt) ] (3:3)

cos(bt) |

HINT: write A = al + b[ 0 1] and use the result

-1 0
of the previous exercise and Lemma 3.2.

Definition 3.2. A real-valued n x n matrix N is
said to be nilpotent if N* = 0 (the zero matrix) for
some k > 0.

Exercise 3.3. Show that 0 is the only eigenvalue
of a nilpotent matrix.

e For a nilpotent matrix N, it is straight-forward
to compute eV because the series (3.1) termi-
nates.

4 Fundamental solution theorem

Theorem 4.1. The unique solution to (1.1) with
x(0) = xq is

x(t) = e"'xq . (4.1)

Proof. First we show that (4.1) is a solution. From
the definition (3.1) one can show that %ef4 = Aet4
(as we would expect), and so

d
x(t) = %emxo = Ae'xy = Ax(t).

Also x(0) = e’xg = xp, hence (4.1) is indeed a
solution.

Second we verify uniqueness. Let y(t) be an-
other solution. Then by the product rule

L (e (1) = —e Ay () + e (0)

The right hand-side of this equation is zero because
y(t) is a solution to (1.1) by assumption. There-
fore e 4y (t) equals a constant, call it yo. That is,
y(t) = ettyg. But y(0) = xq, since y(t) satisfies
the initial condition by assumption. Thus yg = xg
and hence y(t) = x(¢). That is, x(¢) is unique. O

e If A is diagonalisable, then we can compute et

by substituting A = PAP~!, where A is diago-
nal, into (3.1) to obtain

Lk
el = Z% (PAP7Y)(PAPTY) - (PAPTY)
k=0 " kt‘irrnes
ZOthAR
P e
— Petprl

and e can be evaluated by (3.2).

e Consider the affine system

x = Ax +b, (4.2)
where b € R™. If A is invertible (4.2) has the
unique equilibrium x* = —A~1'b and the substi-
tution y = x — x* produces y = Ay. Conse-
quently the solution to (4.2) is

x(t) = e (xg — x*) + x*. (4.3)
If A is not invertible we can instead use the for-
mula

t
x(t) = exq + / e ds. (4.4)
0

Exercise 4.1. Show that (4.3) and (4.4) are the
same when A is invertible.

5 Generalised eigenvectors and tips for
computing e*4

We begin by reviewing some basic concepts related
to eigenvalues, then introduce generalised eigenvec-
tors.

Definition 5.1. Let A be an n X n matrix.

- An eigenvalue of A is a number A € C for which
det(AI — A) = 0.

- The algebraic multiplicity of X is the unique num-
ber k for which det(tI — A) = (t — \)*q(t), where
q(A) # 0.

- The eigenspace associated with A is the nullspace

of AI — A. Any nonzero vector in the eigenspace
is said to be an eigenvector associated with .



- The geometric multiplicity of A\ is the dimension
of the eigenspace.

o Let A\i,..., A\, be the eigenvalues of an n x n
matrix A, let kq,..., k&, be their algebraic mul-
tiplicities, and let ¢, ..., £, be their geometric
multiplicities. Since det(t/ — A) is a degree-n
polynomial, by the fundamental theorem of al-
gebra we have

R —

Also 1 < ¥¢; < k;, for each 1.

o If /y +--- 4+ ¢, = n, then A has n linearly in-
dependent eigenvectors. If P is a matrix whose
columns are these eigenvectors, then

P7'AP =A,

where A is the diagonal matrix where each (i,17)-
element of A is the eigenvalue corresponding to
the i*" column of P.

e Soif ¢y +---+ 4, = n we can compute et? by
using P to diagonalise A (see the first example
in §6).

o If /1 +---+ /¢, <n we can instead compute e’
by using so-called generalised eigenvectors.

A

Definition 5.2. Let A € C be an eigenvalue of an
n X n matrix A and let k be its algebraic multiplic-
ity. The generalised eigenspace associated with A
is the nullspace of (A\I — A)*. Any nonzero vector
in the generalised eigenspace is said to be a gener-
alised eigenvector associated with .

Lemma 5.1. Let A1, ..., A, € C be the eigenvalues
of an nxn matriz, and let E1, ..., By, be the corre-
sponding generalised eigenspaces. Then the dimen-
sion of each E; is equal to the algebraic multiplicity
of \i, and'

=C".

Fio ---aF (5.1)

e Lemma 5.1 is proved in many standard algebra
textbooks; refer to the references listed on pg. 50
of [1].

e Lemma 5.1 tells that the generalised eigenspaces
provide us with enough vectors to form a non-
singular matrix P. Then to compute e we work
with A = P~TAP (see the third example in §6).

e A second key property of generalised eigenspaces
is that they are ‘invariant’ as indicated in the
next exercise (complex eigenvalues are dealt with
in Exercise 5.2). Invariant structures are cru-
cial to our understanding of nonlinear systems of
ODEs as we will see later in the course.

Exercise 5.1. Let A € R be an eigenvalue of a
real-valued matrix A, and let £ C R™ be its cor-
responding generalised eigenspace. Let x(t) be the
solution to (1.1) given x(0) = xo € E. Show that
x(t) € E for all t € R. HINT: first show that v € E
implies Av € E.

e [f some eigenvalues of A are complex-valued, it
is instead simpler to work with a matrix P that
replaces complex conjugate pairs of generalised
eigenvectors with their real and imaginary parts
(see the second example in §6).

Exercise 5.2. Let A ¢ R be an eigenvalue of a real-
valued matrix A, and let E be its corresponding
generalised eigenspace. Let F = Re(E) @ Im(E) C
R™. Let x(t) be the solution to (1.1) given x(0) =
xg € E. Show that x(t) € E for all t € R.

e An excess of alternate approaches to computing
et is given in [2].

6 Examples of computing e'*

Example 6.1. Let A = [:2 :g]

The eigenvalues and eigenvectors are:

AM=-1 v = [11}7

—5, Vo = |}:|

Let P = [v) vy] = [1 1}

Ay =

-1 1

Then P~1 = %E _11 and

!The symbol @ denotes the direct sum which for subspaces is defined as follows. For any two subspaces Uy and Us, their
sum is defined as Uy + Uz = {u1 + uz | u1 € Ui, uz € Us}. Whenever we write V = Uy @ Us we are saying that V = Uy 4+ Us

and U1 N UQ = {O}



etA — Pet/\Pfl

[ 1gfe™ 0 )i -1
=1 1]] 0 e?[2|1 1

([et+e™  —e7t et
2 _e—t+e—5t e—t+e—5t .

Example 6.2. Let A = [(1] _22}

The eigenvalues and eigenvectors are

(6.1)

A=1+i wv= [_1“],

1

and the complex conjugates of these.

We can compute e’ by using P = [v 7] as in
the previous example, but the algebra gets messy
because the numbers are complex-valued. It is eas-

ier to let P = [Re(v) Im(v)] = [_1 1]. Then
1 1

1 0
Pt |V M and A = PAP = B
T oq LT S T Rt

using (3.3) we obtain

otA — peth p-1
B
_ et icos?t) - sin(t)(t)

)1 1
—2sin(t) } ‘

sin(t) cos(t) + sin(?)
01 2
Example 6.3. Let A= |0 2 0]. The eigenval-
210
ues are \; = —2, with algebraic multiplicity 1 and
-1
eigenvector v1 = | 0 |, and Ay = 2, with algebraic
1

multiplicity 2. If we search for eigenvectors corre-
sponding to Ao we will find that there is only one
(more precisely the eigenspace is one-dimensional).
Thus we instead compute a basis for the generalised
eigenspace: the nullspace of

8 0 -8 10 -1
Ml —A2?=1]10 0 0|~|0 0 0
-8 0 8 00 0

where ~ means ‘is row equivalent to’. We can see
1
that the vectors w; = |0
1
such a basis. We then let P = [1)1 w1 wg], which
leads to

0
and wy = |1| form
0

. 3 ) -2 0 0
A=P'AP=]0 2 1
0 0 2
Next, write A = D + B where
-2 0 0 0 0 0
D=0 2 0f, B={0 0 1{.
0 0 2 0 00

This separation allows us to easily compute e*4 be-
cause D is diagonal, B is nilpotent (B? = 0, and
so et = I +tB), and D and B commute (check
this!). Specifically we have

otA — peth p-1
pet(D+B) p—1

I
e

— PetDetBP—l

cosh(2t) te? sinh(2t)
0 et 0 .
sinh(2t) te* cosh(2t)

7 Stable, unstable, and centre subspaces

Definition 7.1. Consider the linear system (1.1)
and let v1,...,v, be a set of linearly indepen-
dent generalised eigenvectors of A. For each j =
1,...,n, decompose v; into its real and imaginary
parts as

v; = u; + iwj , (71)

and let \; denote the corresponding eigenvalue (if
)\j € R then w; = 0).
i) The stable subspace of 0, denoted E*(0), is the
span of all u; and w; for which Re(\;) < 0.

ii) The unstable subspace of 0, denoted E*(0), is
the span of all u; and w; for which Re();) > 0.

iii) The centre subspace of 0, denoted E€(0), is the
span of all u; and w; for which Re();) = 0.



e For any xg € E*(0), we have e*4xy € E*(0) for
all £ € R (this follows from Exercises 5.1 and 5.2).
Also e'xg — 0 as t — oo because all associated
eigenvalues have negative real part. Here we pro-
vide a uniform exponentially decaying bound on
the norm of e'xq.

Let o > 0 be such that Re()\;) < —a for each
Aj with Re(\;) < 0. It can be shown that there
exists K € R such that for every x5 € F*(0) we
have

HetAxSH < K, e_O‘tHXsH, (7.2)

for all ¢ > 0 (see [1], pages 58-59).

e Similarly if @ > 0 is such that Re()\;) > «
for each \; with Re();) > 0, then there exists
K, € R such that for every x,, € E*(0) we have

He_tAqu < Kye x|, (7.3)

for all t > 0.

e Since A has n linearly independent generalised
eigenvectors, the span of E®(0), E“(0), and
E€(0) is R™. Since the sum of the dimensions
of £%(0), E“(0), and E°(0) is n, the intersection
of any two of these subspaces is {0}, and thus we
can write

R" = E%(0) & E*(0) & E°(0). (7.4)

e This tells us that every x € R" can be uniquely
written as x = x5 + X, + X, where x; € E%(0),
x, € E*(0), and x. € E(0).

Example 7.1. Compute the stable, unstable, and
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