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Our journey towards a qualitative and quantitative understanding of systems of nonlinear dynamical
systems begins with linear ODEs. This is in part because many methods that we will encounter later in
the course involve approximating nonlinear ODEs with linear ones.

Unlike nonlinear ODEs, the solution to a system of linear ODEs can always be written down explicitly.
We will first see that eigenvalues and eigenvectors are central to achieving this, and sometimes we need
so-called generalised eigenvectors to obtain the general solution, but our main tool will be that of matrix
exponentiation.

These notes closely follow chapter 2 of Meiss [1].

1 Introduction

• A system of linear ODEs can be written as

ẋ = Ax, (1.1)

where x = x(t) ∈ R
n, A is a real-valued n × n

matrix, and the dot denotes differentiation with
respect to time, t. Often we’re interested in the
solution to (1.1) subject to x(0) = x0, where x0

is a given initial condition.

• Suppose x0 = v, where v is an eigenvector of A
corresponding to an eigenvalue λ ∈ R. In this
case the vector field at x0, namely Ax0, points
in the same direction as v. Thus as the solution
x(t) evolves it continues to have direction v. We
can therefore write x(t) = c(t)v, where c : R → R

with c(0) = 1. Substituting this into (1.1) leads
to

ċ(t)v = λc(t)v,

and so
ċ(t) = λc(t). (1.2)

The general solution to the one-dimensional
ODE (1.2) is

c(t) = keλt, (1.3)

where k ∈ R. Thus the solution to (1.1) with
x(0) = v is

x(t) = eλtv. (1.4)

• Since (1.1) is linear, if x1(t) and x2(t) are solu-
tions to (1.1), then for any constants c1 and c2,

the linear combination

c1x1(t) + c2x2(t), (1.5)

is also a solution to (1.1).

• If we can find m linearly independent eigenvec-
tors, we can form an m-dimensional family of so-
lutions. Ideally we’d like an n-dimensional family
of solutions so that we can construct the partic-
ular solution for any initial condition x0.

Definition 1.1. An equilibrium of a nonlinear sys-
tem of ODEs, ẋ = f(x), is a point x∗ for which
f(x∗) = 0.

• If x(0) = x∗, then x(t) = x∗ is a solution for all
t.

• Note that 0 (the zero vector or origin) is always
an equilibrium of the linear system (1.1).

2 Two-dimensional linear systems

• Here we study (1.1) in the case n = 2 and write

A =

[
a b
c d

]

.

The characteristic polynomial of A is

det(λI −A) = λ2 − τλ+ δ, (2.1)

where
τ = a+ d, δ = ad− bc, (2.2)
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are the trace and determinant of A. The eigen-
values of A are

λ± =
τ ±

√
τ2 − 4δ

2
. (2.3)

• As long as λ+ 6= λ−, we can be sure that λ+

and λ− have linearly independent eigenvectors
v+ and v− (possibly complex-valued). In this
case the linear combination

x(t) = c+e
λ+tv+ + c−e

λ
−
tv− , (2.4)

where c+, c− ∈ C, represents the most general
solution to (1.1).

Exercise 2.1. If λ+ and λ− are complex-valued,
then v+ and v− are also complex-valued. Since A is
real-valued, λ− = λ+ and v− = v+ (where bars de-
note complex conjugation). Show that in this case
if we set c− = c+, then (2.4) will be real-valued
(which is what we want).

• Since the eigenvalues are completely determined
by τ and δ, we can classify the basic properties
of (1.1) in two dimensions just from the values
of τ and δ. However, with an eye to our eventual
study of nonlinear systems, we say that we are
classifying, not the system (1.1), but the equilib-
rium x = 0.

i) If τ > 0 and 0 < δ < τ2

4 , then 0 < λ− < λ+.
Here both terms in (2.4) blow up as t → ∞
and we refer to 0 as an unstable node.

ii) If τ < 0 and 0 < δ < τ2

4 , then λ− < λ+ < 0.
Here both terms in (2.4) tend to zero as t → ∞
and we refer to 0 as a stable node.

iii) If δ < 0, then λ− < 0 < λ+. Here eλ+t → ∞
whereas eλ−

t → 0, as t → ∞ and we refer to 0

as a saddle.

iv) If τ > 0 and δ > τ2

4 , then λ+ and λ− are
complex-valued with positive real parts. Here
solutions (2.4) spiral outwards as t increases
and we refer to 0 as an unstable focus.

v) If τ < 0 and δ > τ2

4 , then λ+ and λ− are
complex-valued with negative real parts. Here
solutions (2.4) spiral inwards as t increases and
we refer to 0 as a stable focus.

• If τ = 0 and δ > 0, then λ± = ±i
√
δ are purely

imaginary. Here solutions (2.4) form ellipses and
we refer to 0 as a centre.

• In other cases if we need to refer to 0 as some-
thing we can just say it is degenerate.

• If δ = τ2

4 , then A has a repeated eigenvalue.
The basic structure of the solutions depends on
whether or not A has one or two linearly inde-
pendent eigenvectors (usually there is just one).

• If δ = 0, then A has a zero eigenvalue.

Exercise 2.2. Show that if A has a zero eigenvalue
then the corresponding eigenvector generates a line
of equilibria.

3 Matrix exponentiation

Here we show how to take e to the power of a ma-
trix. In the next section we use this to solve the
linear system (1.1) in a concise manner.

Definition 3.1. Let A be a real-valued n× n ma-
trix. Then

eA =

∞∑

k=0

Ak

k!
. (3.1)

• The following result follows easily from the above
definition.

Lemma 3.1. Let

D =






d1
. . .

dn






be a diagonal matrix. Then

eD =






ed1

. . .

edn




. (3.2)

• Given numbers x and y, we would happily
rewrite the product exey as ex+y. However, for
matrices we cannot always do this. The next re-
sult tells us that we can do this if the matrices
commute (for an outline of a proof of this result
see [1], chapter 2, exercise 6).

Lemma 3.2. If AB = BA, then eAeB = eA+B.
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Exercise 3.1. Let A =

[
0 1
−1 0

]

. Show that for

any t ∈ R,

etA =

[
cos(t) sin(t)
− sin(t) cos(t)

]

.

Exercise 3.2. Let A =

[
a b
−b a

]

, where a, b ∈ R.

Show that for any t ∈ R,

etA = eat
[
cos(bt) sin(bt)
− sin(bt) cos(bt)

]

. (3.3)

Hint: write A = aI + b

[
0 1
−1 0

]

and use the result

of the previous exercise and Lemma 3.2.

Definition 3.2. A real-valued n × n matrix N is
said to be nilpotent if Nk = 0 (the zero matrix) for
some k ≥ 0.

Exercise 3.3. Show that 0 is the only eigenvalue
of a nilpotent matrix.

• For a nilpotent matrix N , it is straight-forward
to compute eN because the series (3.1) termi-
nates.

4 Fundamental solution theorem

Theorem 4.1. The unique solution to (1.1) with

x(0) = x0 is

x(t) = etAx0 . (4.1)

Proof. First we show that (4.1) is a solution. From
the definition (3.1) one can show that d

dt
etA = AetA

(as we would expect), and so

ẋ(t) =
d

dt
etAx0 = AetAx0 = Ax(t).

Also x(0) = e0x0 = x0, hence (4.1) is indeed a
solution.

Second we verify uniqueness. Let y(t) be an-
other solution. Then by the product rule

d

dt

(
e−tAy(t)

)
= −e−tAAy(t) + e−tAẏ(t).

The right hand-side of this equation is zero because
y(t) is a solution to (1.1) by assumption. There-
fore e−tAy(t) equals a constant, call it y0. That is,
y(t) = etAy0. But y(0) = x0, since y(t) satisfies
the initial condition by assumption. Thus y0 = x0

and hence y(t) = x(t). That is, x(t) is unique.

• If A is diagonalisable, then we can compute etA

by substituting A = PΛP−1, where Λ is diago-
nal, into (3.1) to obtain

etA =
∞∑

k=0

tk

k!

(
PΛP−1

)(
PΛP−1

)
· · ·

(
PΛP−1

)

︸ ︷︷ ︸

k times

= P
∞∑

k=0

tkΛk

k!
P−1

= P etΛP−1,

and etΛ can be evaluated by (3.2).

• Consider the affine system

ẋ = Ax+ b, (4.2)

where b ∈ R
n. If A is invertible (4.2) has the

unique equilibrium x∗ = −A−1b and the substi-
tution y = x − x∗ produces ẏ = Ay. Conse-
quently the solution to (4.2) is

x(t) = etA(x0 − x∗) + x∗. (4.3)

If A is not invertible we can instead use the for-
mula

x(t) = etAx0 +

∫ t

0
esAb ds. (4.4)

Exercise 4.1. Show that (4.3) and (4.4) are the
same when A is invertible.

5 Generalised eigenvectors and tips for

computing etA

We begin by reviewing some basic concepts related
to eigenvalues, then introduce generalised eigenvec-
tors.

Definition 5.1. Let A be an n× n matrix.

- An eigenvalue of A is a number λ ∈ C for which
det(λI −A) = 0.

- The algebraic multiplicity of λ is the unique num-
ber k for which det(tI−A) = (t−λ)kq(t), where
q(λ) 6= 0.

- The eigenspace associated with λ is the nullspace
of λI −A. Any nonzero vector in the eigenspace
is said to be an eigenvector associated with λ.
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- The geometric multiplicity of λ is the dimension
of the eigenspace.

• Let λ1, . . . , λm be the eigenvalues of an n × n
matrix A, let k1, . . . , km be their algebraic mul-
tiplicities, and let ℓ1, . . . , ℓm be their geometric
multiplicities. Since det(tI − A) is a degree-n
polynomial, by the fundamental theorem of al-
gebra we have

k1 + · · ·+ km = n.

Also 1 ≤ ℓi ≤ ki, for each i.

• If ℓ1 + · · · + ℓm = n, then A has n linearly in-
dependent eigenvectors. If P is a matrix whose
columns are these eigenvectors, then

P−1AP = Λ ,

where Λ is the diagonal matrix where each (i, i)-
element of Λ is the eigenvalue corresponding to
the ith column of P .

• So if ℓ1 + · · · + ℓm = n we can compute etA by
using P to diagonalise A (see the first example
in §6).

• If ℓ1 + · · ·+ ℓm < n we can instead compute etA

by using so-called generalised eigenvectors.

Definition 5.2. Let λ ∈ C be an eigenvalue of an
n×n matrix A and let k be its algebraic multiplic-
ity. The generalised eigenspace associated with λ
is the nullspace of (λI − A)k. Any nonzero vector
in the generalised eigenspace is said to be a gener-

alised eigenvector associated with λ.

Lemma 5.1. Let λ1, . . . , λm ∈ C be the eigenvalues

of an n×n matrix, and let E1, . . . , Em be the corre-

sponding generalised eigenspaces. Then the dimen-

sion of each Ei is equal to the algebraic multiplicity

of λi, and
1

E1 ⊕ · · · ⊕ Em = C
n. (5.1)

• Lemma 5.1 is proved in many standard algebra
textbooks; refer to the references listed on pg. 50
of [1].

• Lemma 5.1 tells that the generalised eigenspaces
provide us with enough vectors to form a non-
singular matrix P̃ . Then to compute etA we work
with Λ̃ = P̃−1AP̃ (see the third example in §6).

• A second key property of generalised eigenspaces
is that they are ‘invariant’ as indicated in the
next exercise (complex eigenvalues are dealt with
in Exercise 5.2). Invariant structures are cru-
cial to our understanding of nonlinear systems of
ODEs as we will see later in the course.

Exercise 5.1. Let λ ∈ R be an eigenvalue of a
real-valued matrix A, and let E ⊂ R

n be its cor-
responding generalised eigenspace. Let x(t) be the
solution to (1.1) given x(0) = x0 ∈ E. Show that
x(t) ∈ E for all t ∈ R. Hint: first show that v ∈ E
implies Av ∈ E.

• If some eigenvalues of A are complex-valued, it
is instead simpler to work with a matrix P̃ that
replaces complex conjugate pairs of generalised
eigenvectors with their real and imaginary parts
(see the second example in §6).

Exercise 5.2. Let λ /∈ R be an eigenvalue of a real-
valued matrix A, and let E be its corresponding
generalised eigenspace. Let Ê = Re(E)⊕ Im(E) ⊂
R
n. Let x(t) be the solution to (1.1) given x(0) =

x0 ∈ Ê. Show that x(t) ∈ Ê for all t ∈ R.

• An excess of alternate approaches to computing
etA is given in [2].

6 Examples of computing etA

Example 6.1. Let A =

[
−3 −2
−2 −3

]

.

The eigenvalues and eigenvectors are:

λ1 = −1, v1 =

[
1
−1

]

,

λ2 = −5, v2 =

[
1
1

]

.

Let P =
[
v1 v2

]
=

[
1 1
−1 1

]

.

Then P−1 = 1
2

[
1 −1
1 1

]

and

1The symbol ⊕ denotes the direct sum which for subspaces is defined as follows. For any two subspaces U1 and U2, their
sum is defined as U1 +U2 = {u1 + u2 | u1 ∈ U1, u2 ∈ U2}. Whenever we write V = U1 ⊕U2 we are saying that V = U1 +U2

and U1 ∩ U2 = {0}.
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Λ = P−1AP =

[
λ1

λ2

]

=

[
−1 0
0 −5

]

.

Then

etA = P etΛP−1

=

[
1 1
−1 1

][
e−t 0
0 e−5t

]

1
2

[
1 −1
1 1

]

= 1
2

[
e−t + e−5t −e−t + e−5t

−e−t + e−5t e−t + e−5t

]

.

Example 6.2. Let A =

[
0 −2
1 2

]

.

The eigenvalues and eigenvectors are

λ = 1 + i, v =

[
−1 + i

1

]

, (6.1)

and the complex conjugates of these.
We can compute etA by using P =

[
v v

]
as in

the previous example, but the algebra gets messy
because the numbers are complex-valued. It is eas-

ier to let P̃ =
[
Re(v) Im(v)

]
=

[
−1 1
1 0

]

. Then

P̃−1 =

[
0 1
1 1

]

and Λ̃ = P̃−1AP̃ =

[
1 1
−1 1

]

. By

using (3.3) we obtain

etA = P̃ etΛ̃P̃−1

=

[
−1 1
1 0

]

et
[
cos(t) sin(t)
− sin(t) cos(t)

][
0 1
1 1

]

= et
[
cos(t)− sin(t) −2 sin(t)

sin(t) cos(t) + sin(t)

]

.

Example 6.3. Let A =





0 1 2
0 2 0
2 1 0



. The eigenval-

ues are λ1 = −2, with algebraic multiplicity 1 and

eigenvector v1 =





−1
0
1



, and λ2 = 2, with algebraic

multiplicity 2. If we search for eigenvectors corre-
sponding to λ2 we will find that there is only one
(more precisely the eigenspace is one-dimensional).
Thus we instead compute a basis for the generalised
eigenspace: the nullspace of

(λ2I −A)2 =





8 0 −8
0 0 0
−8 0 8



 ∼





1 0 −1
0 0 0
0 0 0



,

where ∼ means ‘is row equivalent to’. We can see

that the vectors w1 =





1
0
1



 and w2 =





0
1
0



 form

such a basis. We then let P̃ =
[
v1 w1 w2

]
, which

leads to

Λ̃ = P̃−1AP̃ =





−2 0 0
0 2 1
0 0 2



.

Next, write Λ̃ = D +B where

D =





−2 0 0
0 2 0
0 0 2



, B =





0 0 0
0 0 1
0 0 0



.

This separation allows us to easily compute etA be-
cause D is diagonal, B is nilpotent (B2 = 0, and
so etB = I + tB), and D and B commute (check
this!). Specifically we have

etA = P̃ etΛ̃P̃−1

= P̃ et(D+B)P̃−1

= P̃ etDetBP̃−1

...

=





cosh(2t) te2t sinh(2t)
0 e2t 0

sinh(2t) te2t cosh(2t)



.

7 Stable, unstable, and centre subspaces

Definition 7.1. Consider the linear system (1.1)
and let v1, . . . , vn be a set of linearly indepen-
dent generalised eigenvectors of A. For each j =
1, . . . , n, decompose vj into its real and imaginary
parts as

vj = uj + iwj , (7.1)

and let λj denote the corresponding eigenvalue (if
λj ∈ R then wj = 0).

i) The stable subspace of 0, denoted Es(0), is the
span of all uj and wj for which Re(λj) < 0.

ii) The unstable subspace of 0, denoted Eu(0), is
the span of all uj and wj for which Re(λj) > 0.

iii) The centre subspace of 0, denoted Ec(0), is the
span of all uj and wj for which Re(λj) = 0.
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• For any x0 ∈ Es(0), we have etAx0 ∈ Es(0) for
all t ∈ R (this follows from Exercises 5.1 and 5.2).
Also etAx0 → 0 as t → ∞ because all associated
eigenvalues have negative real part. Here we pro-
vide a uniform exponentially decaying bound on
the norm of etAx0.

Let α > 0 be such that Re(λj) < −α for each
λj with Re(λj) < 0. It can be shown that there
exists Ks ∈ R such that for every xs ∈ Es(0) we
have

∥
∥etAxs

∥
∥ ≤ Ks e

−αt‖xs‖, (7.2)

for all t ≥ 0 (see [1], pages 58–59).

• Similarly if α > 0 is such that Re(λj) > α
for each λj with Re(λj) > 0, then there exists
Ku ∈ R such that for every xu ∈ Eu(0) we have

∥
∥e−tAxu

∥
∥ ≤ Ku e

−αt‖xu‖, (7.3)

for all t ≥ 0.

• Since A has n linearly independent generalised
eigenvectors, the span of Es(0), Eu(0), and
Ec(0) is R

n. Since the sum of the dimensions
of Es(0), Eu(0), and Ec(0) is n, the intersection
of any two of these subspaces is {0}, and thus we
can write

R
n = Es(0)⊕ Eu(0)⊕ Ec(0). (7.4)

• This tells us that every x ∈ R
n can be uniquely

written as x = xs + xu + xc, where xs ∈ Es(0),
xu ∈ Eu(0), and xc ∈ Ec(0).

Example 7.1. Compute the stable, unstable, and

centre subspaces of 0 with

A =







1 1 −4 2
0 1 −3 2
0 0 −2 2
0 0 −1 0






.

The eigenvalues of A are λ1 = −1 + i, λ2 = λ1,
and λ3 = 1 (with algebraic multiplicity 2). Since
Re(λ1) = Re(λ2) < 0, these eigenvalues contribute
to Es(0). Since λ3 > 1, this eigenvalue con-
tributes to Eu(0). Indeed we can already con-
clude that Es(0) and Eu(0) are two-dimensional
and Ec(0) = ∅.

An eigenvector for λ1 is (2, 2, 2, 1+ i)T. By tak-
ing its real and imaginary parts we obtain

Es(0) = span



















2
2
2
1






,







0
0
0
1


















.

The geometric multiplicity of λ3 is 2, so we look at

(λ3I −A)2 =







0 0 7 −8
0 0 7 −8
0 0 7 −8
0 0 4 −1






.

The two left-most columns of this matrix are both
0, thus the first two standard basis vectors form a
basis for its nullspace. Hence

Eu(0) = span



















1
0
0
0






,







0
1
0
0


















.
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