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Before we study the behaviour of solutions to nonlinear ODEs, we first need to know when solutions
exist and are unique. The main result is the Picard-Lindel6f theorem which tells us that there exists a
unique solution if the ODEs are Lipschitz. The results require some familiarity of real analysis and closely

follow chapter 3 of Meiss [1].

1 The Picard-Lindelof theorem

Example 1.1. Consider the one-dimensional ODE

Wl

T =ux3. (1.1)
This ODE is separable (meaning we can write
& = g(x)h(t), for some functions g and h), and
so we can directly integrate to obtain

/x_il%dx:/dt,
3

2
—x3 =t+C,
2:1: +

where C' € R. With the general initial condition
2

x(tg) = xg, we have C = %xg — tg, and so

3

2 2

x(t) = (xg +2(t- to)) : (1.2)

Now consider (1.1) with the initial condition

z(0) = 0. Here tg = 0 and xp = 0 and (1.2) gives
3

z(t) = (3t)>. But this is not the only solution!

Notice that x(t) = 0 is also a solution to the ini-

tial value problem. Indeed there is an uncountable

family of solutions: z(t) may take the value 0 until

some time 7 > 0 at which it lifts off according to

(1.2):
0, t<T,
x(t) = { 3

(3t-7)%, t=>7.

e More generally we are concerned with the exis-
tence and uniqueness of solutions to the initial
value problem

x = f(x),

x(to) = Xo, (1.3)

where f : R™ — R"™. The previous example
shows that if f is non-differentiable, then (1.3)
may not have a unique solution. It can be shown
that if f is differentiable, then (1.3) has a unique
solution. But we can do better!

Definition 1.1. Let D C R" be open. A function
f D — R” is said to be Lipschitz if there exists
K € R such that

If(x) = f(¥)I < Klx =yll, forall x,y €D.

(1.4)

e Every Lipschitz function is continuous (and also
uniformly continuous).

e Every differentiable function f : D — R"™ is Lip-

schitz on bounded subsets of D.

Theorem 1.1 (Picard-Lindelof). Consider the ini-

tial value problem (1.3). Let b > 0 and let
Bylxo) = {x €R" | [x—xo| <b},  (15)

be the closed ball of radius b centred at xgq.
Suppose [ is Lipschitz, for some K € R, in

By(xo). Then (1.3) has a unique solution for
t e [to - %,to + %}, where
M= max [|[fx)]. (16)
XEBj(x0)

e The Picard-Lindel6f theorem only allows for
times within % of tg. This can be understood
quite easily. The solution x(¢) has a “speed”
|%(t)| of at most M and so in the worst case
scenario could reach the boundary of Bj(xg) in a
time 2 (using speed is distance divided by time).
Outside By(xg) we have no information on f and
so we cannot say anything about the solution for
times ¢ with [t — to| > &



Exercise 1.1. Consider

i = a2 x(0) =z, (1.7)

where xg > 0.

i) Apply the Picard-Lindeléf theorem with an
arbitrary value b > 0 so show that (1.7) has a
b

unique solution for [t| < ot for any b > 0.

ii) Determine the value of b that maximises

m to show that (1.7) has a unique so-

lution for || < ﬁ.
iii) Solve (1.7) exactly to show that it has a
unique solution for t < ?10 Thus the upper
bound on ¢ generated by the Picard-Lindelof
theorem is i of the value of the actual upper
bound.

2 The contracting mapping theorem

To prove the Picard-Lindel6f theorem we use the
contraction mapping theorem. In this section we
first state some important definitions, many of
which should be familiar to you from real analy-
sis, then state and prove the contraction mapping
theorem (sometimes called the Banach fixed point
theorem). In the next section we prove the Picard-
Lindel6f theorem.

e Please refer to standard real analysis, func-
tional analysis, or abstract algebra texts (or just
Wikipedia) for definitions of the following itali-
cised terms.

e A metric space (X, p) is a vector space X with
a metric p. A normed vector space (X, |-||) is a
vector space X with a norm |[|-||. An inner prod-
uct space (X, <-,->) is a vector space X with an
imner product <-,->.

e Given an inner product < -,->, we can define a
norm by |lul| = /< wu,u>. Given a norm |||,
we can define a metric by p(u,v) = |ju — v||. In
this way every inner product space is a normed
vector space, and every normed vector space is a
metric space.

Definition 2.1. A sequence {up}n>0 in (X, p) is
said to converge if there exists u € X such that for
all € > 0 there exists N € Z such that p(un,u) < e
for all n > N.

Definition 2.2. A sequence {uy,},>0 in (X, p) is
called Cauchy if for all € > 0 there exists N € Z
such that p(up,u,) < € for all m,n > N.

Exercise 2.1. Show that every convergent se-
quence is Cauchy.

Definition 2.3. A metric space is said to be com-
plete if every Cauchy sequence converges.

e A complete inner product space is called a Hilbert
space. A complete normed vector space is called
a Banach space. A complete metric space, well,
it’s just called a complete metric space.

Definition 2.4. A fized point of a continuous func-
tion T : X — X is a point u* for which T'(u*) = u*.

Definition 2.5. Let (X, p) be a metric space. A
function 7' : X — X is said to be a contraction if
there exists 0 < ¢ < 1 such that

p(T(u), T(v)) < cp(u,v), forallu,veX. (2.1)

e Note that contractions are Lipschitz (with con-
stant K = ¢), and hence also continuous.

Theorem 2.1 (Contraction mapping theorem).
Let (X,p) be a complete metric space. Suppose
T: X — X is a contraction. Then T has a unique
fized point.

Proof. Here we prove not only that 7" has a unique
fixed point w*, but that 7" (ug) — u* as n — oo for
every ug € X.

[Existence]. Choose any up € X and define a
sequence {up}i>0 by u; = T'(u;—1) for each i > 1.
Since T is a contraction, for any n > 1

p(un+1a Un) = P(T(un)v T(unfl))
< ep(tn, un—1) = cp(T(un—1), T (un—2))

< P p(Uun—1, Un—2)

< "p(uq, up).

Thus for any m > n, by the triangle inequality

m—1 m—1
Pty tn) < D pluir, ) <Y ¢ plur, ug),
i=n i=n



Using the formula for the sum of a truncated geo-
metric series!

c"p(ur, ug)(1 — ™M)
1—c
" p(u1, uo)
1—c¢

IN

P(Um,, Un)

IN

Since ¢ < 1, we have p(up,u,) — 0 as n — oc.
That is, {uy} is a Cauchy sequence. Since (X, p)
is complete, {u,} converges to some u* € X. Then
u* is a fixed point of T because

T(u") = T< lim un> = lim T'(uy)

n—oo n—oo

= lim up41 = u”,
n—oQ

where we are permitted to swap T and the limit
because T is continuous.

[Uniqueness]. Let v*
point. Then

€ X be another fixed

p(u”,v*) = p(T(u*), T(v")) < cp(u”, v%).

But 0 < ¢ < 1, thus p(u*,v*) = 0, that is,
u* = v*. ]

3 Proof of the Picard-Lindelof theorem

Proof of Theorem 1.1. In order to apply the con-
traction mapping theorem we first need to identify
a suitable complete metric space. Let

V= CO<[to — %,to + z\bA ,Bb(x0)>, (3.1)

be the set of all continuous functions

b b —
u : [to — M,to + M:| — Bb(XO).

We first work with the oo-norm, J|jullec =

supy ||u(t)]]- Then with the induced metric
p(u,v) = |Ju — v||eo, (V,p) is a complete metric
space.

We now define a function T on V as follows.
For any u = u(t) € V let

T(u(t)) =xo + t f(u(s)) ds. (3.2)

a(lf'rN)

1—r

13" geo. series =

Notice that if u* = w*(t) is a fixed point of T,
then u*(t) = xo + fti f(u*(s))ds, and differentiat-
ing this with respect to ¢ gives u*(t) = f(u*(t)).
Also u*(tg) = x¢, thus u*(t) would be a solution
to the initial value problem (1.3). In view of the
contraction mapping theorem it remains for us to
show that 7': V — V and that T is a contraction.
For any u € V and t € [to,to—i- %],

IT(u(t)) = o = \

: Fu(s)) ds

< | IfCuls)ll ds

t
< M ds

to
= (t = to)M
<b,

where || f(u(s))|| < M because u(s) € By(xq)
for all s. Similarly, ||T'(u(t)) — x| < b for all
t € [to— .to]. Thus T(u(t)) € By(xo). Also
T'(u(t)) is a continuous function in view of the way
T is defined. Thus 7' is indeed a function from V'
to V.

For any u,v € V,

(T (u), T(v)) = sup[[T(u(t)) - T(w®))

ttf(u(s)) — f(v(s)) ds||.

= sup
t

Then

t

sup [ 1F(u(s)) = Fo(s))]| ds

te[to,to—‘r%] to
t
< sw [ Klu(s)—v(s)llds
te[to,to+ 5] /o
t
< sup Kllu = vlfo ds

teto,to+ 5] /o
= sup  K|lu—vl||eo(t — to)
t€[to.to+ 7]

K
= sup  —|ju — v/eo -
te[to.to+ 7]

The same result holds for ¢ € [to - %, to], thus

p(T(w), T(w)) < 5 plu,v).

, where a is the first term in the series, r is the ratio, and N is the number of terms.



Thus if Kﬁb < 1 then T is a contraction and by the
contraction mapping theorem has a unique fixed
point u* which, as noted above, is the solution to
(1.3) that we require. Unfortunately, we may have
Kb
ar > L

To resolve this issue we consider instead the Bi-
elecki norm (see [1], page 89),

Jule = supe =l fuo)],

where L > 0. By repeating the above steps with the
Bielecki norm we obtain % <laslongas L > K
(we omit these calculations for brevity). O

4 Generalisations and extensions

e Intuitively, if (1.3) has a unique solution then
we would expect it to have a unique solution for
any other initial condition y sufficiently close to
Xg, and that the solution varies smoothly with
respect to y. The next theorem formalises this
remark.

Theorem 4.1. Consider the initial value prob-
lem (1.3). Let b > 0 and suppose f is Lips-
chitz, for some K € R, in By(xg). Let M =
MaX, 5, (xo) I/ (X)[| and let a = o2z Then for all

y € By (Xq), the initial value problem
2

X = f(x)a X(t()) =Y, (41)
has a unique solution fort € [ty — a,to + a], call it
u(t;y). Moreover, u(t;y) is uniformly Lipschitz?

in'y with Lipschitz constant @,

e The existence and uniqueness of u(t;y) can be
proved in the same way as for the Picard-Lindel6f
theorem, and so we omit a proof.

e To prove that u(t;y) is uniformly Lipschitz we
use differential inequalities. If g(t) is differen-
tiable with ¢(¢) < Kg(t) on [to, to + a], then g(t)
is bounded by the solution to £ = Kx with the
same initial condition. The following result gen-
eralises this to allow functions g that are only
continuous.

Theorem 4.2 (Gronwall’s inequality). Let tp € R
and a > 0. Let g : [to,to + a] — R be continuous.

2This means that for all ¢t € [to - ﬁ,to + ﬁ] and all y,z

€B

Let
t

G(t) =g(to) + K [ g(s)ds,
to
where K > 0 and suppose that g(t) < G(t) for all
t € [to,to +a]. Then

g(t) < Xg(t).

(4.2)

(4.3)

Proof. The function G is differentiable with G(t) =
Kg(t), thus G(t) < KG(t). That is, G(t) —
KG(t) < 0. By multiplying this by its integrat-
ing factor e &t we can collect the two terms into
a single derivative as

d Kt
(e Kig(t)) <o.

This tells us that the value of e X'G(t) at any
t > to must be less than or equal to its value at
t =tp, i.e.

e KIG(t) < e KNG (ty).
Then
g(t) < G(t) < "G 1) = U0y 1),

as required. ]

Proof that u(t;y) is uniformly Lipschitz. Choose

any y,z € By (xg). Define a function g by
2
9(t) = [u(t;y) — u(t; 2)||. (4.4)

Since u(t;y) is a solution to (4.1), it satisfies the
following integral equation (obtained by integrating
the ODE)

ult;y) =y + t f(u(s;y)) ds.

The same equation holds for z, thus for all ¢ €
[to, to + a]

g<t>—Hy+ sty =z [ s

<ly -2+ / 1 F(uls;y)) — Fu(s: )] ds
<y -zl + K / lu(s: y) — u(s;2)]| ds

=g(to) + K | g(s)ds.

to

(x0), we have ||u(t;y) — u(t;z)]| < eKaHy —z.

b
2



Then by Grénwall’s inequality,
g(t) < Mg (tg) < e"g(t0).
That is,

K
[ut;y) —u(t;2)]| < e™%ly — 2],

as required. O
e Many ODEs involve parameters. For example

the angular displacement of a pendulum 6(t) may
be well-modelled by

0= ¢,
¢ =~ sin(),

where g (the acceleration due to gravity) and /¢
(the length of the pendulum) are parameters.

e Lastly we provide a result telling us that if we
vary a parameter of f in a continuous fashion,
then the solution to (1.3) also varies continu-
ously. For a proof see [1], page 97.

Theorem 4.3. Suppose f : By(xo) X B(p10) — R"
has uniformly Lipschitz dependence on x € By(Xq)
and is a uniformly continuous function of param-
eters i € B(uo). Then for all y € By (xq), the
iniatial value problem ’

= f(x;p), x(to) =y,

has a unique solution that is a uniformly continu-
ous function of u on [ty — a,to + a], where a > 0.

5 Bounds for ODEs on R

Theorem 5.1. Let g : R — R be locally Lipschitz.
Let u : [to,to + a] = R and v : [tg,to + a] — R be
differentiable functions satisfying u(to) < v(to) and

(5.1)

for all t € [to,to + al.
t e [to,to +a].

Then u(t) < wv(t) for all

Proof. Suppose for a contradiction that u(t) > v(t)
for some t € [to,to + a]. Then in [tg,to + a] there
exists a last time ¢; for which u(t) < v(¢). This
means that u(t;) = v(t1) and u(t) > v(t) for all
t € (t1,t2), for some ts.

Let w(t) = u(t) — v(t). For any t € (t1,t2),

w(t) < g(u(t)) —g(v(t)) < K(u(t) —v(t) = Kuw(t),

where K > 0 is a Lipschitz constant for ¢, and
w(t;) = 0. Thus w(t) < 0. That is u(t) < v(t),
which is a contradiction. O

Example 5.1. Consider the initial value problem

i = 2% + sin(3z), x(0) = ¢ . (5.2)

Given xg > 0 our goal is to find 7(xg) > 0 such that
(5.2) has a solution for all ¢t € [0,7(xg)) by using
Theorem 5.1.

Let f(x) = 22 4 sin(3z) and let u(t;x9) be
the solution to (5.2). Then u(0,z9) = xo and
u(t;xg) = f(u(t;xg)) for ¢ > 0 (really we mean
for all ¢t > 0 for which u is defined). Notice that
f(x) >0 for all z > 0 (because if 0 < x < %, then
sin(3z) > 0 and so f(x) > 0, while if > % then
22 > 1 and so f(z) > 0). Thus u(t;xg) > 0 for
t > 0, because zg > 0.

Let g(x) = 22 + 1. Let v(¢;z0) be the solution
to the initial value problem

i=2"+1,  x(0)=ux. (5.3)
Then v(0,z9) = zo and 0(¢t;z0) = g(v(t;z0)) for
t > 0. Since f(x) < g(z) for all z > 0, we can apply
Theorem 5.1 to conclude that u(t;zo) < v(t; o).
Now we solve (5.3) explicitly:

1
/x2+1dx:/dt

tan~!(z) =t + C
tan"!(x) =t + tan"*(zo)
v(t;20) = tan(t + tan™ ' (z)).

Thus v(t; o) is well-defined until it blows up at
t =% —tan !(zg) = cot™! (). Therefore u(t;z)
is well-defined for all ¢ € [0, 7(xz¢)), where 7(x¢) =
cot 1 (zq).
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