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Before we study the behaviour of solutions to nonlinear ODEs, we first need to know when solutions
exist and are unique. The main result is the Picard-Lindelöf theorem which tells us that there exists a
unique solution if the ODEs are Lipschitz. The results require some familiarity of real analysis and closely
follow chapter 3 of Meiss [1].

1 The Picard-Lindelöf theorem

Example 1.1. Consider the one-dimensional ODE

ẋ = x
1

3 . (1.1)

This ODE is separable (meaning we can write
ẋ = g(x)h(t), for some functions g and h), and
so we can directly integrate to obtain

∫

x−
1

3 dx =

∫

dt,

3

2
x

2

3 = t+ C,

where C ∈ R. With the general initial condition

x(t0) = x0, we have C = 3
2x

2

3

0 − t0, and so

x(t) =

(

x
2

3

0 + 2
3(t− t0)

)
3

2

. (1.2)

Now consider (1.1) with the initial condition
x(0) = 0. Here t0 = 0 and x0 = 0 and (1.2) gives

x(t) =
(

2
3 t
)

3

2 . But this is not the only solution!
Notice that x(t) = 0 is also a solution to the ini-
tial value problem. Indeed there is an uncountable
family of solutions: x(t) may take the value 0 until
some time τ > 0 at which it lifts off according to
(1.2):

x(t) =

{

0, t ≤ τ,
(

2
3(t− τ)

)
3

2 , t ≥ τ.

• More generally we are concerned with the exis-
tence and uniqueness of solutions to the initial
value problem

ẋ = f(x), x(t0) = x0, (1.3)

where f : R
n → R

n. The previous example
shows that if f is non-differentiable, then (1.3)
may not have a unique solution. It can be shown
that if f is differentiable, then (1.3) has a unique
solution. But we can do better!

Definition 1.1. Let D ⊂ R
n be open. A function

f : D → R
n is said to be Lipschitz if there exists

K ∈ R such that

‖f(x)− f(y)‖ ≤ K‖x− y‖, for all x,y ∈ D.

(1.4)

• Every Lipschitz function is continuous (and also
uniformly continuous).

• Every differentiable function f : D → R
n is Lip-

schitz on bounded subsets of D.

Theorem 1.1 (Picard-Lindelöf). Consider the ini-
tial value problem (1.3). Let b > 0 and let

Bb(x0) = {x ∈ R
n | ‖x− x0‖ ≤ b}, (1.5)

be the closed ball of radius b centred at x0.

Suppose f is Lipschitz, for some K ∈ R, in

Bb(x0). Then (1.3) has a unique solution for

t ∈
[

t0 − b
M
, t0 +

b
M

]

, where

M = max
x∈Bb(x0)

‖f(x)‖. (1.6)

• The Picard-Lindelöf theorem only allows for
times within b

M
of t0. This can be understood

quite easily. The solution x(t) has a “speed”
|ẋ(t)| of at most M and so in the worst case
scenario could reach the boundary of Bb(x0) in a
time b

M
(using speed is distance divided by time).

Outside Bb(x0) we have no information on f and
so we cannot say anything about the solution for
times t with |t− t0| > b

M
.
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Exercise 1.1. Consider

ẋ = x2, x(0) = x0 , (1.7)

where x0 > 0.

i) Apply the Picard-Lindelöf theorem with an
arbitrary value b > 0 so show that (1.7) has a
unique solution for |t| ≤ b

(x0+b)2
for any b > 0.

ii) Determine the value of b that maximises
b

(x0+b)2
to show that (1.7) has a unique so-

lution for |t| ≤ 1
4x0

.

iii) Solve (1.7) exactly to show that it has a
unique solution for t < 1

x0
. Thus the upper

bound on t generated by the Picard-Lindelöf
theorem is 1

4 of the value of the actual upper
bound.

2 The contracting mapping theorem

To prove the Picard-Lindelöf theorem we use the
contraction mapping theorem. In this section we
first state some important definitions, many of
which should be familiar to you from real analy-
sis, then state and prove the contraction mapping
theorem (sometimes called the Banach fixed point
theorem). In the next section we prove the Picard-
Lindelöf theorem.

• Please refer to standard real analysis, func-
tional analysis, or abstract algebra texts (or just
Wikipedia) for definitions of the following itali-
cised terms.

• A metric space (X, ρ) is a vector space X with
a metric ρ. A normed vector space (X, ‖·‖) is a
vector space X with a norm ‖·‖. An inner prod-

uct space (X,< ·, ·>) is a vector space X with an
inner product < ·, ·>.

• Given an inner product < ·, ·>, we can define a
norm by ‖u‖ =

√
< u, u >. Given a norm ‖·‖,

we can define a metric by ρ(u, v) = ‖u − v‖. In
this way every inner product space is a normed
vector space, and every normed vector space is a
metric space.

Definition 2.1. A sequence {un}n≥0 in (X, ρ) is
said to converge if there exists u ∈ X such that for
all ε > 0 there exists N ∈ Z such that ρ(un, u) < ε

for all n ≥ N .

Definition 2.2. A sequence {un}n≥0 in (X, ρ) is
called Cauchy if for all ε > 0 there exists N ∈ Z

such that ρ(um, un) < ε for all m,n ≥ N .

Exercise 2.1. Show that every convergent se-
quence is Cauchy.

Definition 2.3. A metric space is said to be com-

plete if every Cauchy sequence converges.

• A complete inner product space is called a Hilbert
space. A complete normed vector space is called
a Banach space. A complete metric space, well,
it’s just called a complete metric space.

Definition 2.4. A fixed point of a continuous func-
tion T : X → X is a point u∗ for which T (u∗) = u∗.

Definition 2.5. Let (X, ρ) be a metric space. A
function T : X → X is said to be a contraction if
there exists 0 ≤ c < 1 such that

ρ(T (u), T (v)) ≤ cρ(u, v), for all u, v ∈ X. (2.1)

• Note that contractions are Lipschitz (with con-
stant K = c), and hence also continuous.

Theorem 2.1 (Contraction mapping theorem).
Let (X, ρ) be a complete metric space. Suppose

T : X → X is a contraction. Then T has a unique

fixed point.

Proof. Here we prove not only that T has a unique
fixed point u∗, but that Tn(u0) → u∗ as n → ∞ for
every u0 ∈ X.

[Existence]. Choose any u0 ∈ X and define a
sequence {un}i≥0 by ui = T (ui−1) for each i ≥ 1.
Since T is a contraction, for any n ≥ 1

ρ(un+1, un) = ρ(T (un), T (un−1))

≤ cρ(un, un−1) = cρ(T (un−1), T (un−2))

≤ c2ρ(un−1, un−2)

...

≤ cnρ(u1, u0).

Thus for any m > n, by the triangle inequality

ρ(um, un) ≤
m−1
∑

i=n

ρ(ui+1, ui) ≤
m−1
∑

i=n

ciρ(u1, u0).
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Using the formula for the sum of a truncated geo-
metric series1

ρ(um, un) ≤
cnρ(u1, u0)(1− cm−n)

1− c

≤ cnρ(u1, u0)

1− c
.

Since c < 1, we have ρ(um, un) → 0 as n → ∞.
That is, {un} is a Cauchy sequence. Since (X, ρ)
is complete, {un} converges to some u∗ ∈ X. Then
u∗ is a fixed point of T because

T (u∗) = T
(

lim
n→∞

un

)

= lim
n→∞

T (un)

= lim
n→∞

un+1 = u∗,

where we are permitted to swap T and the limit
because T is continuous.

[Uniqueness]. Let v∗ ∈ X be another fixed
point. Then

ρ(u∗, v∗) = ρ(T (u∗), T (v∗)) ≤ cρ(u∗, v∗).

But 0 ≤ c < 1, thus ρ(u∗, v∗) = 0, that is,
u∗ = v∗.

3 Proof of the Picard-Lindelöf theorem

Proof of Theorem 1.1. In order to apply the con-
traction mapping theorem we first need to identify
a suitable complete metric space. Let

V = C0

([

t0 −
b

M
, t0 +

b

M

]

, Bb(x0)

)

, (3.1)

be the set of all continuous functions

u :

[

t0 −
b

M
, t0 +

b

M

]

→ Bb(x0).

We first work with the ∞-norm, ‖u‖∞ =
supt ‖u(t)‖. Then with the induced metric
ρ(u, v) = ‖u − v‖∞, (V, ρ) is a complete metric
space.

We now define a function T on V as follows.
For any u = u(t) ∈ V let

T (u(t)) = x0 +

∫ t

t0

f(u(s)) ds. (3.2)

Notice that if u∗ = u∗(t) is a fixed point of T ,
then u∗(t) = x0 +

∫ t

t0
f(u∗(s)) ds, and differentiat-

ing this with respect to t gives u̇∗(t) = f(u∗(t)).
Also u∗(t0) = x0, thus u∗(t) would be a solution
to the initial value problem (1.3). In view of the
contraction mapping theorem it remains for us to
show that T : V → V and that T is a contraction.

For any u ∈ V and t ∈
[

t0, t0 +
b
M

]

,

‖T (u(t))− x0‖ =

∥

∥

∥

∥

∫ t

t0

f(u(s)) ds

∥

∥

∥

∥

≤
∫ t

t0

‖f(u(s))‖ ds

≤
∫ t

t0

M ds

= (t− t0)M

≤ b,

where ‖f(u(s))‖ < M because u(s) ∈ Bb(x0)
for all s. Similarly, ‖T (u(t))− x0‖ ≤ b for all
t ∈

[

t0 − b
M
, t0

]

. Thus T (u(t)) ∈ Bb(x0). Also
T (u(t)) is a continuous function in view of the way
T is defined. Thus T is indeed a function from V

to V .
For any u, v ∈ V ,

ρ(T (u), T (v)) = sup
t

‖T (u(t))− T (v(t))‖

= sup
t

∥

∥

∥

∥

∫ t

t0

f(u(s))− f(v(s)) ds

∥

∥

∥

∥

.

Then

sup
t∈[t0,t0+ b

M
]

∫ t

t0

‖f(u(s))− f(v(s))‖ ds

≤ sup
t∈[t0,t0+ b

M
]

∫ t

t0

K‖u(s)− v(s)‖ ds

≤ sup
t∈[t0,t0+ b

M
]

∫ t

t0

K‖u− v‖∞ ds

= sup
t∈[t0,t0+ b

M
]
K‖u− v‖∞(t− t0)

= sup
t∈[t0,t0+ b

M
]

Kb

M
‖u− v‖∞ .

The same result holds for t ∈
[

t0 − b
M
, t0

]

, thus

ρ(T (u), T (v)) ≤ Kb

M
ρ(u, v).

1
∑

geo. series =
a(1−r

N)
1−r

, where a is the first term in the series, r is the ratio, and N is the number of terms.
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Thus if Kb
M

< 1 then T is a contraction and by the
contraction mapping theorem has a unique fixed
point u∗ which, as noted above, is the solution to
(1.3) that we require. Unfortunately, we may have
Kb
M

≥ 1.
To resolve this issue we consider instead the Bi-

elecki norm (see [1], page 89),

‖u‖L = sup
t

e−L|t−t0|‖u(t)‖,

where L > 0. By repeating the above steps with the
Bielecki norm we obtain Kb

M
< 1 as long as L ≥ K

(we omit these calculations for brevity).

4 Generalisations and extensions

• Intuitively, if (1.3) has a unique solution then
we would expect it to have a unique solution for
any other initial condition y sufficiently close to
x0, and that the solution varies smoothly with
respect to y. The next theorem formalises this
remark.

Theorem 4.1. Consider the initial value prob-

lem (1.3). Let b > 0 and suppose f is Lips-

chitz, for some K ∈ R, in Bb(x0). Let M =
max

x∈Bb(x0)
‖f(x)‖ and let a = b

2M . Then for all

y ∈ B b

2

(x0), the initial value problem

ẋ = f(x), x(t0) = y, (4.1)

has a unique solution for t ∈ [t0 − a, t0 + a], call it
u(t;y). Moreover, u(t;y) is uniformly Lipschitz2

in y with Lipschitz constant eKa.

• The existence and uniqueness of u(t;y) can be
proved in the same way as for the Picard-Lindelöf
theorem, and so we omit a proof.

• To prove that u(t;y) is uniformly Lipschitz we
use differential inequalities. If g(t) is differen-
tiable with ġ(t) ≤ Kg(t) on [t0, t0 + a], then g(t)
is bounded by the solution to ẋ = Kx with the
same initial condition. The following result gen-
eralises this to allow functions g that are only
continuous.

Theorem 4.2 (Grönwall’s inequality). Let t0 ∈ R

and a > 0. Let g : [t0, t0 + a] → R be continuous.

Let

G(t) = g(t0) +K

∫ t

t0

g(s) ds, (4.2)

where K ≥ 0 and suppose that g(t) ≤ G(t) for all

t ∈ [t0, t0 + a]. Then

g(t) ≤ eK(t−t0)g(t0). (4.3)

Proof. The function G is differentiable with Ġ(t) =
Kg(t), thus Ġ(t) ≤ KG(t). That is, Ġ(t) −
KG(t) ≤ 0. By multiplying this by its integrat-
ing factor e−Kt, we can collect the two terms into
a single derivative as

d

dt

(

e−KtG(t)
)

≤ 0.

This tells us that the value of e−KtG(t) at any
t ≥ t0 must be less than or equal to its value at
t = t0, i.e.

e−KtG(t) ≤ e−Kt0G(t0).

Then

g(t) ≤ G(t) ≤ eK(t−t0)G(t0) = eK(t−t0)g(t0),

as required.

Proof that u(t;y) is uniformly Lipschitz. Choose
any y, z ∈ B b

2

(x0). Define a function g by

g(t) = ‖u(t;y)− u(t; z)‖. (4.4)

Since u(t;y) is a solution to (4.1), it satisfies the
following integral equation (obtained by integrating
the ODE)

u(t;y) = y +

∫ t

t0

f(u(s;y)) ds.

The same equation holds for z, thus for all t ∈
[t0, t0 + a]

g(t) =

∥

∥

∥

∥

y +

∫ t

t0

f(u(s;y)) ds− z−
∫ t

t0

f(u(s; z)) ds

∥

∥

∥

∥

≤ ‖y − z‖+
∫ t

t0

‖f(u(s;y))− f(u(s; z))‖ ds

≤ ‖y − z‖+K

∫ t

t0

‖u(s;y)− u(s; z)‖ ds

= g(t0) +K

∫ t

t0

g(s) ds.

2This means that for all t ∈
[

t0 −
b

2M
, t0 +

b

2M

]

and all y, z ∈ B b

2

(x0), we have ‖u(t;y)− u(t; z)‖ ≤ eKa‖y − z‖.
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Then by Grönwall’s inequality,

g(t) ≤ eK(t−t0)g(t0) ≤ eKag(t0).

That is,

‖u(t;y)− u(t; z)‖ ≤ eKa‖y − z‖,

as required.

• Many ODEs involve parameters. For example
the angular displacement of a pendulum θ(t) may
be well-modelled by

θ̇ = φ,

φ̇ =
−g

ℓ
sin(θ),

where g (the acceleration due to gravity) and ℓ

(the length of the pendulum) are parameters.

• Lastly we provide a result telling us that if we
vary a parameter of f in a continuous fashion,
then the solution to (1.3) also varies continu-
ously. For a proof see [1], page 97.

Theorem 4.3. Suppose f : Bb(x0)×Br(µ0) → R
n

has uniformly Lipschitz dependence on x ∈ Bb(x0)
and is a uniformly continuous function of param-

eters µ ∈ Br(µ0). Then for all y ∈ B b

2

(x0), the

initial value problem

ẋ = f(x;µ), x(t0) = y,

has a unique solution that is a uniformly continu-

ous function of µ on [t0 − a, t0 + a], where a > 0.

5 Bounds for ODEs on R

Theorem 5.1. Let g : R → R be locally Lipschitz.

Let u : [t0, t0 + a] → R and v : [t0, t0 + a] → R be

differentiable functions satisfying u(t0) ≤ v(t0) and

u̇(t) ≤ g(u(t)), v̇(t) = g(v(t)), (5.1)

for all t ∈ [t0, t0 + a]. Then u(t) ≤ v(t) for all

t ∈ [t0, t0 + a].

Proof. Suppose for a contradiction that u(t) > v(t)
for some t ∈ [t0, t0 + a]. Then in [t0, t0 + a] there
exists a last time t1 for which u(t) ≤ v(t). This
means that u(t1) = v(t1) and u(t) > v(t) for all
t ∈ (t1, t2), for some t2.

Let w(t) = u(t)− v(t). For any t ∈ (t1, t2),

ẇ(t) ≤ g(u(t))−g(v(t)) ≤ K(u(t)−v(t)) = Kw(t),

where K ≥ 0 is a Lipschitz constant for g, and
w(t1) = 0. Thus w(t) ≤ 0. That is u(t) ≤ v(t),
which is a contradiction.

Example 5.1. Consider the initial value problem

ẋ = x2 + sin(3x), x(0) = x0 . (5.2)

Given x0 > 0 our goal is to find τ(x0) > 0 such that
(5.2) has a solution for all t ∈ [0, τ(x0)) by using
Theorem 5.1.

Let f(x) = x2 + sin(3x) and let u(t;x0) be
the solution to (5.2). Then u(0, x0) = x0 and
u̇(t;x0) = f(u(t;x0)) for t ≥ 0 (really we mean
for all t ≥ 0 for which u is defined). Notice that
f(x) > 0 for all x > 0 (because if 0 < x < π

3 , then
sin(3x) > 0 and so f(x) > 0, while if x ≥ π

3 then
x2 > 1 and so f(x) > 0). Thus u(t;x0) > 0 for
t ≥ 0, because x0 > 0.

Let g(x) = x2 + 1. Let v(t;x0) be the solution
to the initial value problem

ẋ = x2 + 1, x(0) = x0 . (5.3)

Then v(0, x0) = x0 and v̇(t;x0) = g(v(t;x0)) for
t ≥ 0. Since f(x) ≤ g(x) for all x > 0, we can apply
Theorem 5.1 to conclude that u(t;x0) ≤ v(t;x0).

Now we solve (5.3) explicitly:

∫

1

x2 + 1
dx =

∫

dt

tan−1(x) = t+ C

tan−1(x) = t+ tan−1(x0)

v(t;x0) = tan
(

t+ tan−1(x0)
)

.

Thus v(t;x0) is well-defined until it blows up at
t = π

2 − tan−1(x0) = cot−1(x0). Therefore u(t;x0)
is well-defined for all t ∈ [0, τ(x0)), where τ(x0) =
cot−1(x0).
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