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Attractors were introduced at end of the last section. If we can identify all the attractors of a system,
determine their basins (defined below), and a few other essential properties (e.g. rate of convergence),
then we should have a pretty good understanding of the long-time behaviour of system. Here we will look
at invariant manifolds and use them to help us understand attractors.

1 Stable and unstable manifolds

e As before we consider
x = f(x),

where f : X — X and X is an n-dimensional
manifold, and let ¢:(x) denote the solution to

(1.1).

Definition 1.1. Let A be an invariant set of (1.1).
The stable manifold of A is

(1.1)

WE5A) ={xe X\ A | pi(x) > A ast — oo}
The unstable manifold of A is
WUA)={xe X\ A| pi(x) > Aast — —oo}.

e It can be shown that W#(A) and W*(A) are ac-
tually manifolds, see pages 181-185 of [1].

Definition 1.2. If A is an attracting set then

W#(A) is also known as the basin of attraction of
A.

Lemma 1.1. W5(A) and W*(A) are invariant.

Proof. Choose any z € W#(A) and any s € R.
Since ¢¢(z) — A as t — oo, we have that
vs(pi(z)) — @s(A) = A as t — oo. But
@s(pe(2)) = @i(ps(z)). Therefore pi(ps(z)) — A
as t — oo. Thus ps(z) € W*(A), hence W?*(A)
is invariant. The result for W*(A) can be shown
similarly. O

e As we will see later, intersections between sta-
ble and unstable manifolds provide one of the
most fundamental mechanisms by which chaotic
dynamics arises.

Definition 1.3. An orbit I'y is said to be homo-
clinic to an invariant set A if I'y C W*(A)NW*(A).

Definition 1.4. An orbit I'y is said to be hetero-
clinic to invariant sets A; and Ag if 'y C W¥(A1)N
W (Ag).

e Another way to state Definition 1.4 is to say
that ¢r(x) — A as t — oo and @y(x) — Ag
as t — —oo.

2 The stable manifold theorem

e The stable, unstable, and centre subspaces of an
equilibrium of a linear system were defined in
Part I. For an equilibrium x* of (1.1), these sub-
spaces are given by linearising about x*.

Example 2.1. Here we compute the stable, unsta-
ble, and centre subspaces of the equilibria of

R P

The equilibria of (2.1) are (0,0) and (1,0).

(2.1)

i) First consider (0,0). We have

0 O
pron=[0 O]
This matrix has eigenvalues
)\2 = 07

and corresponding eigenvectors

-l af)



Therefore

E*(0,0) = {cv1 | c € R},
E“(0,0) = &,
E°(0,0) = {cv2 | c € R}.

ii) Second consider (1,0). We have

0 —6
DﬂLm—[4>_J-
This matrix has eigenvalues
AL = —3, Ay =2,

and corresponding eigenvectors

ool el

Therefore
E*(1,0) = { {0] +cvy | c€E ]R},
cE R},

1
E“(1,0) = { {O] + cvo
=g
e The next result, which can be proved using the
fundamental solution theorem, indicates that for
linear ODEs the stable and unstable manifolds
of an equilibrium are equal to its stable and un-
stable subspaces minus the equilibrium.

Lemma 2.1. For the linear system x = Ax,
W#(0) = E*(0) \ {0} and W"(0) = E*(0) \ {0}.

e Of course we more interested in nonlinear ODEs
for which we have the following theorem.

Theorem 2.2 (Stable manifold theorem). Let x*
be a hyperbolic equilibrium of (1.1) and suppose f
is C% (k > 1) in a neighbourhood of x*. Then there
exists 6 > 0 such that

Wige () = {x € W*(x") | ¢1(x) € Bs(x")

for all t >0}, (2.2)

is a C* manifold and a graph over E* that is tan-
gent to E*(x*) at x*.

e Theorem 2.2 tells us that, locally, W#(x*) is a
manifold with the same dimension as F*(x*) and
is tangent to F*(x*) as it emanates from x*.

e The same result can be seen to hold for W*(x*)
by simply reversing the direction of time.

Example 2.2. Here we compute W#*(1,0) to third
order for (2.1).

Above we showed that F*(1,0) has slope %, thus
by the stable manifold theorem W?*(1,0) is a curve
y = ¢(x) where

1
() = 5(35—1)+a(x—1)2+b(a:—1)3+(’)((x —1)%),
for some a,b € R. Our goal is to determine the
values of a and b.
To make things easier for ourselves, we let
u=x — 1. Then (2.1) becomes

ul | —6(14+u)y

gl T - )
We wish to compute the stable manifold of (0, 0) for
(2.3). We write as y = 1(u), where ¥(u) = ¢(u+1).
Since stable manifolds are invariants, we must have

y(t) = ¥ (u(t)) for all ¢. Differentiating this with re-
spect to t gives

(2.3)

§ = (u)i. (2.4)
The LHS of (2.4) is
g =—u—u’ = (u)
— _;u_ (1+a)u?—bu® +0(u?).  (2.5)
The RHS of (2.4) is
Y ()i = <; + 2au + 3bu® + O(u3)>
x (= 6(1+u)ep(u))
- —gu - <9a - ;’)uQ
— (9a+ 12a* + 120)u® + O(u®). (2.6)

By matching the u?-terms of (2.5) and (2.6) we ob-
tain a = —%. By then matching the u3-terms we
obtain b = %.

Exercise 2.1. For the system (2.1), similarly com-
pute W*(1,0) to third order.



3 Towards a proof of the stable manifold
theorem

e We first consider the affine non-autonomous sys-
tem

% = Ax + (), (3.1)

where v : R — R™. We suppose A has no eigen-
values with zero real part (so that 0 is a hy-
perbolic equilibrium for (3.1) when ~ is the zero
function). Then E¢(0) = &, and every x € R”
can be uniquely written as x = X + x,, where
xs € E%(0) and x,, = E%(0). We write

X5 = ms(X), Xy = Tyu(X), (3.2)

where 75 : R — E*(0) and 7, : R® — E“(0)
are the appropriate projection operators.

Lemma 3.1. Suppose A has no eigenvalues with
zero real part and v : R — R™ s continuous and
bounded on [0,00). Let o € E*(0). Then there ex-
ists unique x € E"(0) such that, with xg = o + X,
the solution to (3.1) with x(0) = xo is bounded.
Moreover, this solution can be written as

t
x(t) = et + / U= An (y(s)) ds
0

- / T e, (3(5)) ds.

t

(3.3)
Proof. The solution to (3.1) with an arbitrary ini-
tial condition x(7) = x, is

¢
x(t) = "% + / =945(s5) ds,

T

(3.4)

which can be seen by simply checking that it works,
and obtained constructively by using an integrating
factor.
We write x(t) = ms(x(t)) + mu(x(t)), and con-
sider these two projections separately.
By wusing (3.4) with 7 = 0,
7s(x(0)) = o, we have

and noting

Ts(x(t)) = o +/0 =D An (y(s))ds.  (3.5)

We now show that (3.5) is bounded. Let o > 0 be
such that |[Re(\)| > « for every eigenvalue X of A.
Since v(t) is bounded there exists M € R such that

Ilv(¢)]] < M for all t > 0. Using also (7.2) of Part I
we obtain

which verifies that (3.5) is bounded.
Secondly, by applying the projection m, to (3.4)
we obtain

K M

)

<

/ o= (y(s)) ds
0

«

mu(x(1)) = ¢4 (e—”*wu(x»
+ /T t e A, (y(s)) ds).

If (3.6) is to be bounded for all ¢ > 0, we require
the term inside the parentheses to limit to zero as
t — oo. That is

(3.6)

e T, (%) + /OO e A (v(s)) ds = 0.

This holds for any 7, thus we can put 7 = t and
solve for 7, (x¢) to obtain

Tu(xy) = — /t - eU=94m, (v(s)) ds. (3.7)

Hence the solution is indeed given by (3.3), and
putting t = 0 in (3.7) gives

= — Ooe_SAﬂ' s))ds. )
x= /0 (1)) d (3.8)

Thus if (3.3) is to be bounded we must have x given
by (3.8). Then using (7.3) of Part II and (3.7) we
obtain

K,.M
(x| < =,

which shows that (3.3) is bounded. O

e Next we outline the proof of Theorem 2.2 given
in [1], pages 176-180. As with the proof of the
Picard-Lindel6f theorem, the essential tool is the
contraction mapping theorem. Note that we do
not actually use Lemma 3.1; it only motivates
the function T

Outline of proof of Theorem 2.2. We can assume

x* = 0 (in view of the coordinate change x —

x—x*). Then f(x) = Ax+g(x) where g(x) = o(x).



By analogy with (3.3), for any ¢ € FE%(0)
we define a function T C%([0,00),R") —
C°([0,00),R™), by

T(u(t)) = o + /Ot =) A7 (u(s)) ds

_ j(”e@—@Awuums»cm.

It can be shown that 7T is a forward invariant con-
traction on a set

Vs = {u e C°([0,00), R™) | [lul| <4},

where § > 0 is sufficiently small. The contraction
mapping theorem is then used to show that 7" has
a unique fixed point u*(¢; o).

We then see that u*(t;0) is a solution to
(1.1). Moreover, we can use a generalised form of
Gronwall’s inequality to show that u*(t;0) — 0 as
t — o0, hence u*(t;0) C W#(0). This shows that
Wy .(0) is a graph over E*.

Finally, the smoothness of W (0) and its tan-
gency to E*(0) can be shown by using a result that
says that if a contraction map varies smoothly with
respect to parameter values, then its fixed point
also varies smoothly. O

4 Centre manifolds

e Now we consider non-hyperbolic equilibria which
are more difficult to deal with because the local
dynamics does not split so simply into stable and
unstable components.

Theorem 4.1 (Centre manifold theorem). Let x*
be an equilibrium of (1.1) and suppose f is C*
(k > 1) in a neighbourhood of x*. Then there exists
0 > 0 such that within Bs(x*) there exists

i) a unique C* invariant manifold tangent to
E*(x*) and contained within W*(x*),

ii) a unique C* invariant manifold tangent to
EY(x*) and contained within W*(x*),

i) and a C*~' invariant manifold tangent to
Ec(x*).

e Invariant manifolds tangent to E°(x*) are called
centre manifolds. Part (iii) of Theorem 4.1 tells
us that centre manifolds exist. For a proof of
Theorem 4.1, see, for instance, [2].

e Usually we cannot hope to compute centre man-
ifolds exactly, we can only compute their Taylor
expansions up to some order. Centre manifolds
are usually not unique, but if f is C° in a neigh-
bourhood of x* then all centre manifolds have the
same Taylor expansion. For this reason we often
(imprecisely) refer to ‘the’ centre manifold of an
equilibrium.

e Next we provide an analogy of the Hartman-
Grobman theorem for non-hyperbolic equilibria.
To state the result we first make some assump-
tions justified via coordinate transformations.

e We assume f is C! and that 0 is an equilibrium
of (1.1). We assume that at 0 the Jacobian takes
the block diagonal form

C
Df(0) = s
U

(4.1)

where all eigenvalues of C' have zero real part, all
eigenvalues of S have negative real part, and all
eigenvalues of U have positive real part. Write
x = (u,v,w), where the dimensions of u, v,
and w match those of C, S, and U, respectively.
Then (1.1) can be written as

u=Cu+ F(u,v,w),
v =5v+G(uv,w),
w=Uw+ H(u,v,w),
(4.2)

where F', G, and H are o(u,v,w).

By Theorem 4.1, any centre manifold of O can be
written locally as

u)| | ue B;0)p,

We0) = 1 |9l
h(u)

(4.3)

for some o(u) functions g and h and some § > 0.

Theorem 4.2 (Non-hyperbolic Hartman-Grob-
man). There exists a neighbourhood of O within
which (1.1) is conjugate to

i = Cu+ F(u,g(u), h(u)),
v =295V,

w=Uw.



Example 4.1. Consider the system

i)

ii)

iii)

T 2% -y
HEECY R i B
Write W¢(0,0) as y = ¢(x) and compute the

first nonzero term in a Taylor series expansion

of ¢ about x = 0.

Derive an equation for the restriction of (4.4)
to W<(0,0).

Use your result from (ii) to describe W#(0,0)
and W*(0,0).

0

We have Df(0,0) = [0

ues are

_11] . The eigenval-

M=0, =1,

and the corresponding eigenvectors are

The centre manifold W¢(0,0) is tangent to v;
at (0,0), hence has slope 0 here. Thus we can
write

o(x) = ax® + ba® + cx* + dz® + O(6), (4.5)
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where we have chosen to include coefficients
up to order five due to a little foresight.

Since centre manifolds are invariants, y(t) =
¢(x(t)) for all t. Differentiation with respect
to t gives

j = (x)i.
The LHS of (4.6) is

(4.6)

ax® + ba® + cxt + (d + 1)z° + O(6),
whilst the RHS is
—2a%2® — Baba? — (6ac + 3b*)2” + O(6).

Matching the z? to z° terms gives a = 0,
b=0,c=0,and d = —1. Hence ¢(z) =
—z° 4+ O(6).

On W*<(0,0), we have

i =15 — ¢(z) = 22° + O(6). (4.7)
Since Ao > 0, in the vy direction nearby orbits
head away from (0,0). From (4.7) we deduce
that in the vy direction nearby orbits also head
away from (0,0). Therefore W#(0,0) = @ and
W™(0,0) includes a neighbourhood of (0,0),
minus the point (0,0) itself.
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