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Here we begin to look at bifurcations. These are critical parameter values at which the dynamics of
a system changes in a fundamental way.

1 Structural stability

• Consider

ẋ = f(x;µ), (1.1)

where f : X × R
m → X . From an applied view-

point, we wish to understand how the dynamics
of (1.1) changes as we vary the vector-valued pa-
rameter µ in a continuous fashion.

• Often the dynamics of (1.1) remains essentially
unchanged as we vary µ. That is, while equilib-
ria move a bit and their eigenvalues change a bit,
the overall dynamics is qualitatively the same.
Fundamental changes in the dynamics typically
occurs only at a discrete set of values of µ.

Definition 1.1. We say that (1.1) is structurally
stable for a given value of µ, if there exists δ > 0
such that ẋ = f(x; µ̃) is topologically equivalent to
ẋ = f(x;µ) for all µ̃ ∈ Bδ(µ).

Definition 1.2. If (1.1) is not structurally stable
for a given value of µ, then µ is said to be a bifur-
cation value.

Exercise 1.1. Consider the linear system

ẋ =

[

µ 2
2µ 3

]

x, (1.2)

where µ ∈ R.

i) Determine the range of values of µ for which
0 is a (a) stable node, (b) stable focus, (c)
unstable focus, (d) unstable node, (e) saddle.

ii) Use your answer to (i) to determine the bifur-
cation values of (1.2). Hint: use Theorem 4.2
from Part III.

• Roughly speaking, a bifurcation occurs when an
invariant set undergoes a fundamental change.
From now until §5, we are now going to look
solely at bifurcations for which this invariant set
is an equilibrium.

• The next result tells us that hyperbolic equilibria
are structurally stable features of (1.1).

Theorem 1.1. Suppose f is a Ck (k ≥ 1) function
of x and µ, and suppose x∗ is a hyperbolic equilib-
rium of (1.1) for a given value of µ. Then there ex-
ists δ > 0 and a unique Ck function φ : Bδ(µ) → X
with φ(µ) = x∗, such that φ(µ̃) is a hyperbolic equi-
librium of ẋ = f(x; µ̃) for all µ̃ ∈ Bδ(µ).

Exercise 1.2. Show that Theorem 1.1 is a simple
consequence of the Implicit Function Theorem:

Theorem 1.2 (Implicit Function Theorem). Sup-
pose f : R

n × R
m → R

n is Ck (k ≥ 1). Sup-
pose f(x∗;y∗) = 0 and det(Dxf) 6= 0 at (x∗;y∗).
Then there exists δ > 0 and a unique Ck func-
tion φ : Bδ(y

∗) → R
n with φ(y∗) = x∗ such that

f(φ(y);y) = 0 for all y ∈ Bδ(y
∗).

• In view of Theorem 1.1, if an equilibrium of (1.1)
undergoes a bifurcation it must have an associ-
ated eigenvalue with zero real part.

• The simplest cases are that Df(x∗) has (i) an
eigenvalue 0, and (ii) purely imaginary eigenval-
ues ±iω, and, in each case, no other eigenvalues
with zero real part.

• The first case gives rise to a saddle-node bifur-
cation, §2. The second case gives rise to a Hopf
bifurcation, §3.

• Indeed these are the only two codimension-
one bifurcations that equilibria undergo, un-
less the system has some type of symmetry or
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degeneracy, where a bifurcation is said to be
codimension-k if it is determined by k indepen-
dent scalar conditions on the parameter values.

2 Saddle-node bifurcations

• For simplicity we consider the one-dimensional
system

ẋ = f(x;µ), (2.1)

where f : R× R → R.

Theorem 2.1. Consider (2.1) where f is Ck (k ≥
2). Suppose

i) f(0; 0) = 0 (x = 0 is an equilibrium when
µ = 0),

ii) ∂f
∂x

(0; 0) = 0 (the associated eigenvalue is zero
when µ = 0),

iii) ∂f
∂µ

(0; 0) 6= 0 (transversality condition),

iv) ∂2f
∂x2 (0; 0) 6= 0 (non-degeneracy condition).

Then there exists δ > 0 and a unique Ck function
ξ : [−δ, δ] → R with

ξ(0) = 0,

ξ′(0) = 0,

ξ′′(0) = −
∂2f
∂x2 (0; 0)
∂f
∂µ

(0; 0)
,

such that f(x; ξ(x)) = 0 for all x ∈ [−δ, δ].

Proof. By the assumptions on f we can write

f(x;µ) = a1µ+ a2x
2 + a3µx+ a4µ

2 + o(2), (2.2)

where a1, a2 6= 0. By the implicit function theorem
(in Theorem 1.2 we use x = µ and y = x) there ex-
ists δ > 0 and a unique Ck function ξ : [−δ, δ] → R

with ξ(0) = 0 such that f(x; ξ(x)) = 0 for all
x ∈ [−δ, δ]. Write

ξ(x) = b1x+ b2x
2 + o

(

x2
)

. (2.3)

By substituting (2.3) into (2.2) we obtain

f(x; ξ(x)) = a1b1x+
(

a1b2 + a2 + a3b1 + a4b
2

1

)

x2

+ o

(

x2
)

. (2.4)

We need f(x; ξ(x)) = 0, so from the x-term in (2.4)
we obtain b1 = 0, and from the x2-term in (2.4) we

obtain b2 = −a2
a1
. This completes the proof (in par-

ticular observe ξ′′(0) = 2b2,
∂2f
∂x2 (0; 0) = 2a2, and

∂f
∂µ

(0; 0) = a1).

• Locally, if ξ′′(0) < 0 then (2.1) has two equilibria
for µ < 0 and no equilibria for µ > 0, while if
ξ′′(0) > 0 then (2.1) has no equilibria for µ < 0
and two equilibria for µ > 0.

• One of these equilibria will be stable, the other
will be unstable.

• A bifurcation diagram is a plot indicating the in-
variant sets (e.g. equilibria) of the system with a
parameter (e.g. µ) on the horizontal axis and a
variable (e.g. x) on the vertical axis. Tradition-
ally, stable and unstable sets are indicated with
solid and dashed lines respectively (or blue and
red lines, respectively, if colour is available).

Exercise 2.1. Consider

ẋ = µ+ x− ln(1 + x). (2.5)

Equilibria satisfy 0 = µ + x − ln(1 + x). Unfortu-
nately we cannot explicitly solve this equation for
x as a function of µ. However, we can solve it for
µ: we have µ = ξ(x) where

ξ(x) = −x+ ln(1 + x). (2.6)

i) Show that (2.5) satisfies all the conditions of
Theorem 2.1.

ii) Verify that (2.6) satisfies all the conclusions
to the theorem.

iii) Draw a bifurcation diagram of (2.6).

• Roughly speaking, the normal form of a bifur-
cation is the simplest representative system ex-
hibiting the bifurcation. The normal form for a
saddle-node bifurcation is

ẋ = µ− x2. (2.7)

• Now consider

ẋ = µx− x2, (2.8)

ẋ = µx− x3. (2.9)

These are examples of systems that satisfy con-
ditions (i) and (ii) of Theorem 2.1 (i.e. x = 0
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is an equilibrium with eigenvalue 0 when µ = 0)
but do not satisfy the remaining conditions of the
theorem. They are important examples of degen-
erate saddle-node bifurcations that are common
in systems with symmetry or degeneracy.

Exercise 2.2. Sketch a bifurcation diagram of
(2.8). This is the normal form of a transcritical
bifurcation.

Exercise 2.3. Sketch a bifurcation diagram of
(2.9). This is the normal form of a pitchfork bifur-
cation (your bifurcation diagram should look like a
pitchfork).

3 Hopf bifurcations

Here we present the Hopf bifurcation theorem1 as
given in [1]. For a comprehensive review of Hopf
bifurcations, see [2].

• Let us start with the normal form for a Hopf
bifurcation:

[

ẋ

ẏ

]

=

[

µx− ωy − αx(x2 + y2)
ωx+ µy − αy(x2 + y2)

]

, (3.1)

where µ ∈ R is the primary bifurcation parame-
ter and ω, α ∈ R are additional parameters.

• Notice that (x, y) = (0, 0) is an equilibrium of
(3.1) with eigenvalues ±iω when µ = 0.

Exercise 3.1. Show that in polar coordinates (3.1)
is given by

ṙ = µr − αr3, θ̇ = ω. (3.2)

Use (3.2) to draw two bifurcation diagrams of (3.1),
showing x as a function of µ. Assume ω > 0 and
α are fixed, with α < 0 for one diagram and α > 0
for the other diagram. Make sure to indicate the
stability of the invariant sets in your diagrams.

• We now consider a two-dimensional system
[

ẋ

ẏ

]

= f(x, y;µ) =

[

f1(x, y;µ)
f2(x, y;µ)

]

, (3.3)

as this is the fewest number of dimensions in
which Hopf bifurcations can occur.

Theorem 3.1. Consider (3.3) where f is Ck (k ≥
3). Suppose

i) f1(0, 0; 0) = f2(0, 0; 0) = 0 ((x, y) = (0, 0) is
an equilibrium when µ = 0),

ii) Df(0, 0; 0) =

[

0 −ω

ω 0

]

for some ω 6= 0 (the

Jacobian matches that of the normal form
(3.1)),

iii) b = ∂2f1
∂µ∂x

+ ∂2f2
∂µ∂y

6= 0 (transversality condi-
tion),

iv) a 6= 0 (non-degeneracy condition),

where

a = 1

16

(

∂3f1
∂x3 + ∂3f2

∂x2∂y
+ ∂3f1

∂x∂y2
+ ∂3f2

∂y3

)

+ 1

16ω

[

∂2f1
∂x∂y

(

∂2f1
∂x2 + ∂2f1

∂y2

)

− ∂2f1
∂x2

∂2f2
∂x2

− ∂2f2
∂x∂y

(

∂2f2
∂x2 + ∂2f2

∂y2

)

+ ∂2f1
∂y2

∂2f2
∂y2

]

. (3.4)

Then a periodic orbit bifurcates into µ < 0 if ab > 0
and into µ > 0 if ab < 0. The amplitude of the pe-
riodic orbit is asymptotically proportional to

√

|µ|,
while the period limits to 2π

|ω| as µ → 0.

• If the periodic orbit is stable [resp. unsta-
ble] we say the Hopf bifurcation is supercritical
[resp. subcritical]. The stability of the periodic
orbit is opposite to the stability of the equilib-
rium on the side of the bifurcation that it exists.
The sign of b determines which side of µ = 0 the
equilibrium is stable, thus the criticality of the
Hopf bifurcation is determined by the sign of a.

Exercise 3.2. Show that (3.1) satisfies the condi-
tions of Theorem 3.1.

Exercise 3.3. Consider the van der Pol oscillator

[

ẋ

ẏ

]

=

[

y

−x+ 2µy − x2y

]

. (3.5)

Show that (3.5) satisfies the conditions of Theorem
3.1 and determine the criticality of the bifurcation.

1First proved in R
n by Eberhard Hopf (1902–1983), sometimes called the Andronov-Hopf bifurcation as it first proved

in R
2 by Aleksandr Andronov (1901–1952), and sometimes called the Poincaré-Andronov-Hopf bifurcation as Poincaré was

aware of the result.
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4 Extended centre manifolds and di-

mension reduction

• Suppose x∗ is a non-hyperbolic equilibrium of
(1.1) with µ = µ∗. In the previous set of notes
we encountered the non-hyperbolic Hartman-
Grobman theorem which tells us that, with µ =
µ∗, the dynamics of (1.1) is essentially deter-
mined by its behaviour on the centre manifold.

• In order to investigate the dynamics for values of
µ near µ∗, we simply apply the non-hyperbolic
Hartman-Grobman theorem to the extended sys-
tem:

ẋ = f(x;µ),

µ̇ = 0,
(4.1)

by treating µ as a variable.

• In this way, bifurcations, such as the saddle-node
bifurcation (described above in one dimension)
and the Hopf bifurcation (described above in two
dimensions), can be understood for (1.1) in any
number of dimensions. This is the technique of
dimension reduction via a centre manifold anal-
ysis.

• If µ = µ∗ corresponds to a codimension-one bi-
furcation, then the dimension of the centre mani-
fold of (1.1) with µ = µ∗ is one, and for simplicity
we can assume µ ∈ R. Then the centre manifold
of (4.1), referred to as the extended centre man-
ifold, is two-dimensional.

Example 4.1. Consider
[

ẋ

ẏ

]

=

[

(2 + µ)x+ y + x2 − y3

2x+ (1 + 3µ)y − 2xy

]

. (4.2)

Notice that (x, y) = (0, 0) is an equilibrium when
µ = 0. Here we will compute the extended centre
manifold and use it determine the local dynamics.

The extended system is




ẋ

ẏ

µ̇



 = F (x, y, µ) =





(2 + µ)x+ y + x2 − y3

2x+ (1 + 3µ)y − 2xy
0



.

The Jacobian of the extended system evaluated at
(x, y, µ) = (0, 0, 0) is

DF (0, 0, 0) =





2 1 0
2 1 0
0 0 0



. (4.3)

The eigenvalues and eigenvectors of (4.3) are

λ1 = 3, v1 =





1
1
0



,

λ2 = 0, v2 =





1
−2
0



, v3 =





0
0
1



.

The centre subspace Ec(0, 0, 0) is the span of v2
and v3 and can be written as y = −2x. Therefore
W c(0, 0, 0) can be written as y = φ(x, µ) where

φ(x, µ) = −2x+ ax2 + bµx+ cµ2 +O(3), (4.4)

for some a, b, c ∈ R.

We now write ẏ in two different ways, and
match terms, in order to evaluate a, b, and c. First,
by substituting (4.4) for y in the right hand side of
(4.2), after simplification we obtain

ẏ = (4 + a)x2 + (−6 + b)µx+ cµ2 +O(3). (4.5)

Second, by the chain rule, ẏ = ∂φ
∂x

ẋ + ∂φ
∂µ

µ̇. Since
µ̇ = 0 we have

ẏ =
∂φ

∂x
ẋ

= (−2− 2a)x2 + (−2− 2b)µx− 2cµ2 +O(3).
(4.6)

Upon matching (4.5) and (4.6) we obtain

a = −2, b =
4

3
, c = 0. (4.7)

We have thus computed W c(0, 0, 0) to second or-
der.

By substituting y = φ(x, µ) with (4.7) into
(4.2), we see that on W c(0, 0, 0) we have

ẋ = −x2 +
7

3
µx+O(3). (4.8)

It is then a simple exercise to compute the equilib-
ria of (4.8) and draw a bifurcation diagram from
which we can infer that µ = 0 is a transcritical
bifurcation.
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Exercise 4.1. Here you will study the dynamics
of a model of a semiconductor laser with feedback
(given in [3]):

ẋ = x(y − 1),

ẏ = γ

(

δ0 − y − xy +
α(x+ z)

1 + s(x+ z)

)

,

ż = −ε(x+ z).

(4.9)

These equations are simplified and dimensionless;
x represents photon density, y represents electron
density, and z is a linear combination of current
and x. To answer the following questions you may
assume

γ = 0.001, δ0 = 1.017, α = 1, s = 11. (4.10)

i) Suppose ε = 0 (with which the system is effec-
tively two-dimensional). Calculate equilibria
and their stability.

ii) Draw a bifurcation diagram of the system
with ε = 0. What two bifurcations do you
see in the diagram?

iii) Use matlab to explore the dynamics of the
system with small ε > 0. Use the bifurca-
tion diagram with ε = 0 to help explain your
findings.

5 Global bifurcations

• Thus far we have only considered bifurcations
that occur when an equilibrium loses hyperbol-
icity. These are examples of local bifurcations
because, under generic conditions, only the dy-
namics in a neighbourhood of the equilibrium un-
dergoes a topological change.

• In contrast a global bifurcation affects the dy-
namics, well, globally. Typically these can only
be identified numerically.

• An important example of a global bifurcation is
a homoclinic bifurcation. A homoclinic bifurca-
tion occurs when a periodic orbit collides with
an equilibrium and turns into a homoclinic orbit.
When this happens under generic conditions, the
stable and unstable manifolds of the equilibrium
suddenly access different parts of phase space.

Exercise 5.1. Consider the forced van der Pol sys-
tem

[

ẋ

ẏ

]

=

[

1

ε

(

y − x3 − a1x− a0
)

b2x
2 + b1x− y

]

, (5.1)

studied in [4]. Here we fix

ε = 0.5, a1 = −1, b1 = −4, b2 = 5, (5.2)

and use a0 ∈ R as a bifurcation parameter.

i) Plot a basic bifurcation diagram showing equi-
libria and identify the a0 values of two saddle-
node bifurcations.

ii) Use Matlab to numerically identify a super-
critical Hopf bifurcation and a homoclinic bi-
furcation. Add these features to your bifurca-
tion diagram.

6 Codimension-two bifurcations

• Thus far we have only considered codimension-
one bifurcations. A codimension-two bifurcation
involves two scalar conditions. Examples include
a Takens-Bogdanov bifurcation (where an equi-
librium has an associated eigenvalue of 0 with
algebraic multiplicity two) and a Bautin bifurca-
tion (what would be a Hopf bifurcation except
that the criticality parameter (3.4) is zero).

• To summarise the dynamics near a codimension-
two bifurcation, one usually plots a two-
parameter bifurcation diagram (sometimes called
a bifurcation set). This uses a parameter on
each axis. Thus curves in two-parameter bifurca-
tion diagrams represent codimension-one bifur-
cations.

Exercise 6.1. Consider

ẋ = f(x;µ1, µ2) = µ1 + µ2x− x3. (6.1)

With (µ1, µ2) = (0, 0), x = 0 is an equilib-
rium with an associated eigenvalue of 0. This
would be a saddle-node bifurcation except that the
non-degeneracy condition is not satisfied because
∂2f
∂x2 (0; 0, 0) = 0. Equation (6.1) is the normal form
for a cusp bifurcation.

i) Show that (6.1) has saddle-node bifurcations
on the curve 27µ2

1
− 4µ3

2
= 0.

ii) Draw a two-parameter bifurcation diagram:
show the curve 27µ2

1
− 4µ3

2
= 0 and overlay

a few small representative phase portraits.
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