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Chaos theory is one the great triumphs of 20" century science. Chaos was first recognised by Poincaré
in the 1880’s while attempting to solve the three-body problem. Many notable advances were then made
in the 1920’s and 1930’s in the context of ergodic theory (which we will come to later). However, it wasn’t
until computer simulations became available that the true nature, importance, and ubiquity of chaos was
realised. In 1963 Lorenz discovered how chaos can make long-term weather prediction impossible [1]. The
term ‘chaos’ was coined by Yorke in 1975 and first given a mathematical definition in [2].

Here we explore chaos in ODEs. Today there is no universally accepted definition of chaos, and
indeed to quote from a recent article by Sander and Yorke [3]: the concept of chaos is too big for one
single mathematical definition to suffice. For a popular science introduction to chaos refer to the marvelous

book of Gleick [4].

1 Sensitive dependence and transitivity

e As before we consider

where f: X — X and let ¢;(x) denote the solu-
tion.

(1.1)

Definition 1.1. Let @ C X be an invariant set
of (1.1). Then (1.1) exhibits sensitive dependence
on initial conditions on £ if there exists r > 0
such that for all x € Q and all € > 0 there ex-
ists y € B:(x) N Q such that |¢i(x) — @i(y)| > 7
for some t > 0.

Example 1.1. Here we show that

& = 3, (1.2)

exhibits sensitive dependence on initial conditions.

The solution to (1.2) is ¢(z) = xe®. Thus
oi(x +e) = (z+e)ed = ¢y(x) + ce3. Thus, for
any € > 0, we can make |p;(7) — i (z +¢)| = et
as large as we like by choosing ¢ sufficiently large.
Thus Definition 1.1 can be satisfied with, say, r = 1.

Definition 1.2. Let 2 C & be an invariant set
of (1.1). Then (1.1) is transitive on § if for all
nonempty open U,V C 2, there exists ¢ > 0 such
that o (U)NV # @.

e Note, U and V are open with respect to the in-
duced metric on ). Specifically a set U C € is
open if for every x € U there exists € > 0 such
that B-(z)NQ C U.

Exercise 1.1. Consider

0, =1,
. (1.3)
o = v,

where 01,65 € [0, 27) (thus phase space is a torus).
Show (1.3) is transitive if and only if the parameter
v is not a rational multiple of 7.

Lemma 1.1. Let Q@ C X be an invariant set of
(1.1) where the manifold X is second countable!.
If (1.1) is transitive on S then it has a dense for-
ward orbit in €.

Proof. Since X is second countable it is separable
which means there exists a countable collection of
points {y,}22, that are dense in Q. For each n,
let Uy = Bi(yn) N . By transitivity there ex-
ists t9 > 0 ‘such that o1, (U1) N Uy # @. Then
there exists open Vo C Uy, with diameter at most
%, such that ¢, (V2) C Us. Similarly there exists
ts > 0 such that ¢, (V2) NUs # @. Then there

LA topological space X is second countable if there exists a countable collection of open subsets of X’ such that any open
subset of X can be written as a union of elements of this collection. For example R™ (with the usual topology) is second

countable for any n > 1.



exists open V3 C Vs, with diameter at most %, such
that ¢4, (V3) C Us. Continuing we obtain times ¢,
and nested open sets V,,, with diameter at most
L such that ¢, (V) C Up, for all m = 2,...,n.
Write {x} = (),2, Vn. Then, by construction, I'f
is dense in €. O

e We are now ready to provide a definition of chaos
following [5].

Definition 1.3. The system (1.1) is chaotic on a
compact invariant set € if it is transitive and ex-
hibits sensitive dependence on initial conditions on
Q.

Exercise 1.2. Consider the Lorenz system [1]

t=o(y—x),
y=rx—axz—uy, (1.4)

z=uxy — bz.

i) Treat o > 0 and b > 0 as fixed and r > 0 as
a bifurcation paramter. Find all equilibria of
(1.4). What type of bifurcation is r = 17

ii) Use MATLAB to compute orbits of (1.4) with
oc=10,b= % and several values of r € [1,28].
Observe two Hopf bifurcations (occurring at
the same value of ) and convince yourself
that (1.4) is chaotic, according to Definition
1.3, with » = 28. Chaos with r = 28 was
formally proved by Tucker in 2002, see [6].

2 Fractals and dimension

e An attractor is said to be strange if it is a ‘frac-
tal’.

e Fractals are difficult to define precisely. Essen-
tially they involve a pattern that repeats on dif-
ferent scales.

e Here we provide a simple notion of dimension
which is useful for describing the size of a frac-
tal. The Hausdorff dimension is a similar but
more sophisticated notion of dimension.

Definition 2.1. Let @ € R”. For each ¢ > 0
let N(¢) be the minimum number of n-dimensional
cubes of edge length € needed to cover 2. Then

the boz dimension (or Minkowski- Bouligand dimen-
sion) of € is

(2.1)

Exercise 2.1. Let Sy C R? be an equilateral tri-
angle with edge length 1. For each n = 1,2,...
construct a set S, C R? by replacing the middle
third of each side of S, _1 with an equilateral tri-
angle on the outside of S;,_1. Determine the box
dimension of lim,_,~ S, (the Koch snowflake).

3 Poincaré maps

e A discrete-time dynamical system

Xir1 = g(xi), (3.1)

where g : ) — Y for some manifold ), is referred
to as a map.

e Maps arise from the system (1.1) as the first re-
turn of orbits to a cross-section of X'. Such maps
are called Poincaré maps.

Definition 3.1. Let II C X be smooth, connected,
and (n — 1)-dimensional, and suppose f(x) is not
tangent to II at x for all x € II (such a set II is
called a Poincaré section). We define the Poincaré
map P : 1T — II by letting P(x) = ¢4(x), for the
smallest ¢ > 0 for which ¢4(x) € II, if such a ¢
exists, for all x € II.

e Poincaré maps are usually only well-defined lo-
cally because if we follow the cross-section II far
enough we often come to a point x € II where
f(x) is tangent to II or the forward orbit of x
does not return to II.

e The motivation here is that by analysing a
Poincaré map of (1.1) we can hope to better un-
derstand oscillatory dynamics. For example, if
(1.1) has a periodic orbit that intersects II at
a single point y, then y is a fixed point of P
(i.e. P(y) =1y). As we will see, by doing a basic
stability analysis of y for the map P (by comput-
ing the eigenvalues of DP(y)) we can determine
the stability of the periodic orbit for the system

(1.1).

2Two maps g1 : V1 — V1 and g2 : Vo — Yo are said to be conjugate if there exists a homeomorphism h : )4 — )2 such

that h(g1(y)) = g2(h(y)) for all y € ).



e The choice of Poincaré section is not important

in the sense that, under certain restrictions, any
two Poincaré maps are conjugate?.

As an example we consider
T=—-yY— 2z,
Yy =2+ ay,
Z=b+ z(x — ¢,

(3.2)

where a, b, c € R are parameters. This is known
as the Rossler system as it was introduced by
Otto Réssler [7] who had the aim of studying
a chaotic system simpler than the Lorenz sys-
tem (indeed (3.2) contains only a single nonlinear
term).

Fig. 1 shows a typical forward orbit of (3.2) (with
transients removed) with

a=02  b=02, (3.3)

The direction of motion is anti-

c=2>5.7,

as used in [7].
clockwise.

Figure 1: The Rossler attractor (more precisely
part of a numerically computed orbit is shown).
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Fig. 1 essentially shows the attractor of (3.2)
with (3.3). Roughly speaking, while near the
z = 0 plane, orbits on the attractor spiral out-
wards until they are ejected upwards, twisted,
and folded back down towards the z = 0 plane.

We consider the Poincaré section defined by z =
0 and y < 0 as shown in Fig. 1. The orbit
intersects this section at a sequence of points

(-Ta Y, Z) = (07 Yis Zi)‘

The corresponding Poincaré map is an invert-
ible two-dimensional map. However, due to the
strong contraction to the z = 0 plane, this map
is well-approximated by a one-dimensional map,
as indicated in Fig. 2. Notice that this one-
dimensional map is non-invertible, and this is
what allows the dynamics of the Rdossler system
to be complicated (chaotic in fact).
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Figure 2: The y-values of intersections of the orbit
shown in Fig. 1 with the Poincaré section z = 0,
y < 0.
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