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Chaos theory is one the great triumphs of 20th century science. Chaos was first recognised by Poincaré
in the 1880’s while attempting to solve the three-body problem. Many notable advances were then made
in the 1920’s and 1930’s in the context of ergodic theory (which we will come to later). However, it wasn’t
until computer simulations became available that the true nature, importance, and ubiquity of chaos was
realised. In 1963 Lorenz discovered how chaos can make long-term weather prediction impossible [1]. The
term ‘chaos’ was coined by Yorke in 1975 and first given a mathematical definition in [2].

Here we explore chaos in ODEs. Today there is no universally accepted definition of chaos, and
indeed to quote from a recent article by Sander and Yorke [3]: the concept of chaos is too big for one

single mathematical definition to suffice. For a popular science introduction to chaos refer to the marvelous
book of Gleick [4].

1 Sensitive dependence and transitivity

• As before we consider

ẋ = f(x), (1.1)

where f : X → X and let ϕt(x) denote the solu-
tion.

Definition 1.1. Let Ω ⊂ X be an invariant set
of (1.1). Then (1.1) exhibits sensitive dependence

on initial conditions on Ω if there exists r > 0
such that for all x ∈ Ω and all ε > 0 there ex-
ists y ∈ Bε(x) ∩ Ω such that |ϕt(x)− ϕt(y)| > r

for some t ≥ 0.

Example 1.1. Here we show that

ẋ = 3x, (1.2)

exhibits sensitive dependence on initial conditions.
The solution to (1.2) is ϕt(x) = xe3t. Thus

ϕt(x + ε) = (x + ε)e3t = ϕt(x) + εe3t. Thus, for
any ε > 0, we can make |ϕt(x)− ϕt(x+ ε)| = εe3t

as large as we like by choosing t sufficiently large.
Thus Definition 1.1 can be satisfied with, say, r = 1.

Definition 1.2. Let Ω ⊂ X be an invariant set
of (1.1). Then (1.1) is transitive on Ω if for all
nonempty open U, V ⊂ Ω, there exists t > 0 such
that ϕt(U) ∩ V 6= ∅.

• Note, U and V are open with respect to the in-
duced metric on Ω. Specifically a set U ⊂ Ω is
open if for every x ∈ U there exists ε > 0 such
that Bε(x) ∩ Ω ⊂ U .

Exercise 1.1. Consider

θ̇1 = 1,

θ̇2 = ν,
(1.3)

where θ1, θ2 ∈ [0, 2π) (thus phase space is a torus).
Show (1.3) is transitive if and only if the parameter
ν is not a rational multiple of π.

Lemma 1.1. Let Ω ⊂ X be an invariant set of

(1.1) where the manifold X is second countable1.
If (1.1) is transitive on Ω then it has a dense for-

ward orbit in Ω.

Proof. Since X is second countable it is separable

which means there exists a countable collection of
points {yn}

∞

n=1 that are dense in Ω. For each n,
let U1 = B 1

n

(yn) ∩ Ω. By transitivity there ex-

ists t2 > 0 such that ϕt2
(U1) ∩ U2 6= ∅. Then

there exists open V2 ⊂ U1, with diameter at most
1

2
, such that ϕt2

(V2) ⊂ U2. Similarly there exists
t3 > 0 such that ϕt3

(V2) ∩ U3 6= ∅. Then there

1A topological space X is second countable if there exists a countable collection of open subsets of X such that any open
subset of X can be written as a union of elements of this collection. For example R

n (with the usual topology) is second
countable for any n ≥ 1.
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exists open V3 ⊂ V2, with diameter at most 1

3
, such

that ϕt3
(V3) ⊂ U3. Continuing we obtain times tn

and nested open sets Vn, with diameter at most
1

n
, such that ϕtm(Vn) ⊂ Um, for all m = 2, . . . , n.

Write {x} =
⋂

∞

n=2
Vn. Then, by construction, Γ+

x

is dense in Ω.

• We are now ready to provide a definition of chaos
following [5].

Definition 1.3. The system (1.1) is chaotic on a
compact invariant set Ω if it is transitive and ex-
hibits sensitive dependence on initial conditions on
Ω.

Exercise 1.2. Consider the Lorenz system [1]

ẋ = σ(y − x),

ẏ = rx− xz − y,

ż = xy − bz.

(1.4)

i) Treat σ > 0 and b > 0 as fixed and r > 0 as
a bifurcation paramter. Find all equilibria of
(1.4). What type of bifurcation is r = 1?

ii) Use Matlab to compute orbits of (1.4) with
σ = 10, b = 8

3
and several values of r ∈ [1, 28].

Observe two Hopf bifurcations (occurring at
the same value of r) and convince yourself
that (1.4) is chaotic, according to Definition
1.3, with r = 28. Chaos with r = 28 was
formally proved by Tucker in 2002, see [6].

2 Fractals and dimension

• An attractor is said to be strange if it is a ‘frac-
tal’.

• Fractals are difficult to define precisely. Essen-
tially they involve a pattern that repeats on dif-
ferent scales.

• Here we provide a simple notion of dimension
which is useful for describing the size of a frac-
tal. The Hausdorff dimension is a similar but
more sophisticated notion of dimension.

Definition 2.1. Let Ω ⊂ R
n. For each ε > 0

let N(ε) be the minimum number of n-dimensional
cubes of edge length ε needed to cover Ω. Then

the box dimension (orMinkowski-Bouligand dimen-

sion) of Ω is

dbox = lim
ε→0

ln(N(ε))

ln
(

1

ε

) . (2.1)

Exercise 2.1. Let S0 ⊂ R
2 be an equilateral tri-

angle with edge length 1. For each n = 1, 2, . . .
construct a set Sn ⊂ R

2 by replacing the middle
third of each side of Sn−1 with an equilateral tri-
angle on the outside of Sn−1. Determine the box
dimension of limn→∞ Sn (the Koch snowflake).

3 Poincaré maps

• A discrete-time dynamical system

xi+1 = g(xi), (3.1)

where g : Y → Y for some manifold Y, is referred
to as a map.

• Maps arise from the system (1.1) as the first re-
turn of orbits to a cross-section of X . Such maps
are called Poincaré maps.

Definition 3.1. Let Π ⊂ X be smooth, connected,
and (n − 1)-dimensional, and suppose f(x) is not
tangent to Π at x for all x ∈ Π (such a set Π is
called a Poincaré section). We define the Poincaré

map P : Π → Π by letting P (x) = ϕt(x), for the
smallest t > 0 for which ϕt(x) ∈ Π, if such a t

exists, for all x ∈ Π.

• Poincaré maps are usually only well-defined lo-
cally because if we follow the cross-section Π far
enough we often come to a point x ∈ Π where
f(x) is tangent to Π or the forward orbit of x
does not return to Π.

• The motivation here is that by analysing a
Poincaré map of (1.1) we can hope to better un-
derstand oscillatory dynamics. For example, if
(1.1) has a periodic orbit that intersects Π at
a single point y, then y is a fixed point of P

(i.e. P (y) = y). As we will see, by doing a basic
stability analysis of y for the map P (by comput-
ing the eigenvalues of DP (y)) we can determine
the stability of the periodic orbit for the system
(1.1).

2Two maps g1 : Y1 → Y1 and g2 : Y2 → Y2 are said to be conjugate if there exists a homeomorphism h : Y1 → Y2 such
that h(g1(y)) = g2(h(y)) for all y ∈ Y1.
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• The choice of Poincaré section is not important
in the sense that, under certain restrictions, any
two Poincaré maps are conjugate2.

• As an example we consider

ẋ = −y − z,

ẏ = x+ ay,

ż = b+ z(x− c),

(3.2)

where a, b, c ∈ R are parameters. This is known
as the Rössler system as it was introduced by
Otto Rössler [7] who had the aim of studying
a chaotic system simpler than the Lorenz sys-
tem (indeed (3.2) contains only a single nonlinear
term).

• Fig. 1 shows a typical forward orbit of (3.2) (with
transients removed) with

a = 0.2, b = 0.2, c = 5.7, (3.3)

as used in [7]. The direction of motion is anti-
clockwise.
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Figure 1: The Rössler attractor (more precisely
part of a numerically computed orbit is shown).

• Fig. 1 essentially shows the attractor of (3.2)
with (3.3). Roughly speaking, while near the
z = 0 plane, orbits on the attractor spiral out-
wards until they are ejected upwards, twisted,
and folded back down towards the z = 0 plane.

• We consider the Poincaré section defined by x =
0 and y < 0 as shown in Fig. 1. The orbit
intersects this section at a sequence of points
(x, y, z) = (0, yi, zi).

• The corresponding Poincaré map is an invert-
ible two-dimensional map. However, due to the
strong contraction to the z = 0 plane, this map
is well-approximated by a one-dimensional map,
as indicated in Fig. 2. Notice that this one-
dimensional map is non-invertible, and this is
what allows the dynamics of the Rössler system
to be complicated (chaotic in fact).
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Figure 2: The y-values of intersections of the orbit
shown in Fig. 1 with the Poincaré section x = 0,
y < 0.
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