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Maps model discrete-time phenomena and arise as return maps (Poincaré maps) in ODE systems. As
we saw in Part VI, chaotic dynamics in the Rossler system is well-approximated by a one-dimensional
unimodal map. It is therefore important to study maps, and with one-dimensional unimodal maps we

hope to obtain a deeper understanding of chaos.

1 Dynamical systems definitions

e We consider a map

x s £(3), (1)
where f: X — X is continuous. We write
ff"=fofo---of (1.2)
[

n times

for the composition of f with itself n times.
Given x € X, the point f"(x) is called the n'"
iterate of x under f.

e Many dynamical systems concepts that we have
studied for ODEs generalise naturally to maps.
The difference is that now time is discrete in-
stead of continuous. Here we redefine some key
definitions for (1.1).

Definition 1.1. A fized point of (1.1) is a point
x* € X for which f(x*) = x*.

Definition 1.2. A forward invariant region of
(1.1) is a set Q C X for which f(2) C Q. A trap-
ping region is a non-empty, compact set Q2 C X for
which f(€) C int(Q).

Definition 1.3. A set A C X is said to be an at-
tracting set of (1.1) if there exists a trapping region
Q such that

A=) Q.
n=0

An attractor is an attracting set that contains a
dense orbit.

2 Aspects of one-dimensional maps
e As an example, consider the map
f(z) =1—62% + 627, (2.1)

shown in Fig. 1.
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Figure 1: A cobweb diagram for the map (2.1).

e We can sketch orbits of a one-dimensional map,
such as (2.1), as follows. We first draw the 45°
line, f(x) = x. Given an initial value u, we
start at the point (u,u), then draw a vertical
line segment to the graph of f, then continue
with a horizontal line segment back to the 45°
line. These two line segments take us to the point
(f(w), f(u)). By repeating these steps, as shown
in Fig. 1 using v = 0.6, we can compute the
forward orbit of w. This is known as a cobweb
diagram.



e Cobweb diagrams allow us to effectively simulate
iterations of the map by hand and can be used to
determine the qualitative nature of the dynamics
without the need for a computer.

Exercise 2.1. For the map

f(:c)z{%x+1’ r=0

(2.2)
—2x+1, x>0,

draw a cobweb diagram to illustrate the forward
orbit of v = 0. What do you think the orbit con-
verges to?

e The next result (first given in [1]) involves the
following alternate ordering of the positive inte-
gers:

3579110 ---
>2:-3>2-5>2-7>2-92-11p---
>22.3522.5522.7622.9522 11+

>32>16>8p4>2p 1

Theorem 2.1 (Sharkovskii’s theorem). Let f :
R — R be continuous. Suppose f has a period-n
orbit (i.e. f"(x) = x, for some x € R). Then, for
all m<an, f also has a period-m orbit.

e In particular, this theorem tells us that if f has
a period-3 orbit, then it has orbits of every pe-
riod! In [2], Li and Yorke went one step further
and showed that in this instance f must also be
chaotic.

e We will not prove Sharkovskii’s theorem, just
give a brief example to illustrate the type of ar-
guments that are involved. More details are pre-
sented in [3].

Example 2.1. Suppose a continuous map f : R —
R has a period-n solution, for some n > 1. Show
that f also has a fixed point.

Let zin and xpmax denote the minimum and
maximum points of the period-n solution. Then

f(@min) > Tmin, Whilst f(Zmax) < Tmax. Since f
is continuous, by the intermediate value theorem
f(z) = x for some = € (Tmin, Tmax)-

e The next discussion concerns maps on [0, 1]. This
is because we are commonly only interested in
the dynamics of a map in some forward invari-
ant region. For a one-dimensional map we can
usually assume this region is an interval and by
a change of coordinates can assume it is [0, 1].

Definition 2.1. A continuous map f : [0,1] —
[0,1] is said to be unimodal if there exists ¢ € (0,1)
such that either f(x) < cfor all z # cor f(z) > ¢
for all x # c¢. Furthermore, f is said to be S-
unimodal if it is C% and the Schwarzian derivative

f/// 3 f// 2
sr=17-5(%) (2.3)
is non-positive in [0, ¢) U (¢, 1].
Exercise 2.2. Consider f(z) Z;”ig, where

a,b,c,d € R. Show that (Sf)(z) =0 for all x € R
with cz + d # 0.

Exercise 2.3. Argue that to understand S-
unimodal maps it suffices to assume f(c) = 1 and

f(1) =o0.

e The next result, taken from [4], essentially says
that any S-unimodal map with non-degenerate!
extremum has a unique attractor and that this
attractor has one of three possible structures.

Theorem 2.2. Let f : [0,1] — [0,1] be a S-
unimodal map with extremum ¢ € (0,1). Suppose
fle)=1, f(1) =0 and f"(c) # 0. Then there ex-
ists a unique attractor A C [0,1] such that A = w(x)
for almost alP x € [0,1] and either

i) A is periodic solution,
i) A is a cycle of disjoint intervals®, or

iii) A is a Feigenbaum-like attractor®.

'"Here non-degenerate means f”(c) # 0. If f”(c) = 0 additional complications are possible, see [5].
2The phrase ‘almost all € [0, 1’ will be defined in Part VIII. It essentially means ‘with probability 1 for randomly chosen

x €10,1].
3That is, A = U;POI I;, where Iy, ...

, In—1 are disjoint intervals in [0,1] and f(lo) = I1, f(I1) = I2, . ..

7f(In*1) = IO'

1A Feigenbaum-like attractor is a certain type of Cantor set, see for instance [4].



3 Fixed points and stability

Definition 3.1. A fixed point x* of (1.1) is said
to be Lyapunov stable if for all € > 0 there exists
d > 0 such that f"(x) € B-(x*) for all x € Bs(x*)
and all n > 0.

Definition 3.2. A fixed point x* of (1.1) is said
to be asymptotically stable if it is Lyapunov stable
and there exists 6 > 0 such that f"(x) — x* as
n — oo for all x € Bs(x*).

Exercise 3.1. Consider the linear map

x — Ax, (3.1)

where A is a real-valued N x N matrix. Notice that
for any x € RY we have f"(x) = A"x.
i) Show that if |A] < 1 for every eigenvalue A

of A, then 0 is an asymptotically stable fixed
point of (3.1).

ii) Show that if |A| > 1 for some eigenvalue A of
A, then 0 is not a Lyapunov stable fixed point
of (3.1).

e If f is smooth, or at least C', then, analogous to
the Hartman-Grobman theorem for ODEs, the
dynamics near a fixed point of (1.1) are well-
approximated by the linearisation of (1.1) about
the fixed point. For instance, we have the follow-
ing result which generalises the previous exercise.

Theorem 3.1. Let x* be a fized point of (1.1) and
suppose f is C*.
i) If |A| < 1 for every eigenvalue A of D f(x*),
then x* is an asymptotically stable fized point
of (1.1).
ii) If I\ > 1 for some eigenvalue X of D f(x*),
then x* is mot a Lyapunov stable fized point

of (1.1).

e The eigenvalues of D f(x*) are called the stability
multipliers of x*.

e Here we consider the linear map (3.1) in two-
dimensions and write

a b
A= [C d] |
The stability multipliers of the fixed point 0 are
the roots of A> — 7\ + & = 0 where
0 = ad — be.

(3.2)

T=a+d, (3.3)

e Solving |[A| = 1 produces three cases:

i) A=1; here 6 =7 — 1.
ii) A\=—1; here § = —7 — 1.

iii) A = ' for some ¢ € (0,7); here § = 1 and
T € (-2,2).

The origin 0 is stable in the triangle of the (7, d)-
plane bounded by the lines (i), (ii), and (iii).
4 Structural stability

e To motivate the ideas in this section, consider
the one-dimensional linear map

flz) = (4.1)

N8

Here 0 is the unique fixed point of (1.1) and is
asymptotically stable (the stability multiplier is
3)-

e Intuitively we think of the stable fixed point 0
as a ‘robust’ feature of (4.1) in the sense that if
we change the map by a small amount, then a
single stable fixed point should persist. But we
must be careful, as the following example shows.

For any ¢ > 0, let k. = ﬁ The range of the
function

ge(z) = ze ke’ (4.2)
is [—¢,¢], that is ||ge||lcc = €. Yet the map

f() =3+ g=(), (4.3)

has three fixed points including 0 which is now
unstable (the stability multiplier is 3). In sum-
mary, we have changed the qualitative behaviour
of the map near an asymptotically stable fixed
point by applying an arbitrarily small continu-
ous perturbation.

e The catch in this example is that the deriva-
tive of the perturbation is not small (specifically
%(0) = 1). This highlights the fact that the
class of perturbations that we allow is critically
important to the robustness and structural sta-
bility of the features of a map.



e Structural stability was introduced for families
of ODEs in Part V. Here we reformulate this for
(i) families of maps, and (ii) perturbations of a
single map.

Definition 4.1. Two maps f; : X} — X} and
fo : Xy — Xy are said to be conjugate if there exists
a homeomorphism h : X7 — X5 such that

h(fi(y)) = f2(M(y)), forally € &1.  (4.4)
Definition 4.2. A family of maps
x > f(x: 1), (4.5)

where f: X x R™ — X, is structurally stable at a
given value of p if x;11 = f(x;; 1) is conjugate to
Xi+1 = f(x4; ) for all 1 in some neighbourhood of
1.

e In order to describe structural stability more gen-
erally we need to think about spaces of functions.
For simplicity we consider only phase spaces X
that are compact. We begin in one dimension.

Definition 4.3. For any k > 0, the C*-norm of a
C* function f : [a,b] — R is

1fllex = 1 flloo + 1 lloo + -+ 1f Plloo . (46)

e The space of C* functions f : [a,b] — R together
with the C*-norm is a Banach space.

Definition 4.4. Let f : [a,b] — [a,b] be C*. The
map

x— f(x), (4.7)

is said to be C* structurally stable (or structurally
stable in the C* topology) if there exists § > 0 such
that

x— f(z)+ g(z), (4.8)

is conjugate to (4.7) for every C* g on [a,b] with
lgllex <o

e For example, it can be shown that (4.1) is C*
structurally stable, but, as we found above, (4.1)
is not C° structurally stable.

e The same ideas work in higher dimensions, but
it is more complicated to write (4.6) because the
ith derivative of a function f : RV — R¥ is an
(i + 1)-order tensor.

e In brief, a C* map f on a smooth compact man-
ifold X is C* structurally stable if there exists
§ > 0 such that every f € Bs(f) (in the space of
C* maps on X equipped with the C* topology)
is conjugate to f.

e Finally we provide a technical but important re-
sult that provides an equivalence between the
seeming disparate notions of structural stability
and hyperbolicity. This was first proved in [6],
see also [7].

Definition 4.5. A C!' map f on a smooth mani-
fold X is said to be Axiom A if the non-wandering
set® of f is compact and hyperbolic® and the set of
periodic points of f is dense in the non-wandering
set.

Theorem 4.1. A C! map f on a smooth compact
manifold X is C structurally stable if and only if
it is Aziom A.

5 Bifurcations

e As we saw in Part VI, bifurcations are critical
parameter values at which structural stability is
lost.

e Here we study codimension-one bifurcations of
fixed points. These are described in [8, 9, 10]
and in more detail in [11].

Definition 5.1. A fixed point x* of (1.1) is said to
be hyperbolic if no eigenvalue of D f(x*) has mod-
ulus 1.

e Non-hyperbolicity occurs if Df(x*) has (i) an
eigenvalue 1, (ii) an eigenvalue —1, or (iii) eigen-
values e?, where ¢ € (0,7). These corre-
spond to (i) saddle-node bifurcations, (ii) period-
doubling (or flip) bifurcations, and (iii) Neimark-
Sacker bifurcations.

®The non-wandering set is all points x € X with the property that for all € > 0 and all m > 0 there exists n > m such
that f"(x) € B:(x). That is, the forward orbit of x repeatedly comes arbitrarily close to x (it doesn’t wander away).
5This essentially means that the non-wandering set has no centre manifold.



e We now describe these, in order, in the lowest
possible number of dimensions. In higher dimen-
sions the bifurcations behave in the same way
(on extended centre manifolds).

e First, consider the one-dimensional map

x> fas ), (5.1)

where f: R x R — R.

Theorem 5.1. Consider (5.1) where f is C* (k >
2). Suppose

i) f(0;0) = 0 (x = 0 is a fized point when
p=0),

i) %(0; 0) = 1 (the associated stability multi-
plier is 1),

iii) g—i(O; 0) # 0 (transversality condition,),
i) %(0; 0) # 0 (non-degeneracy condition).

Then there exists 6 > 0 and a unique C* function
€ :[-9,0] = R with

£(0) =0,

¢'(0) =0,
21(0;0)

gl/(o) _81‘ ,
5-(0;0)

such that f(x,&(x)) = x for all x € [—06,0].

e If (5.1) satisfies the conditions of Theorem 5.1,
we say that (5.1) has a saddle-node bifurcation
at u = 0. Here two fixed points (one stable, one
unstable) collide and annihilate.

Exercise 5.1. Consider the one-dimensional map

1
Flen) = 1+, (52
Find v > 0 at which (5.2) has a saddle-node bi-
furcation. HINT: Either (i) solve f(x;v) = =
and %(m;v) = 1 simultaneously, or (ii) rearrange
f(z;v) = 2 as v = h(z) and solve h/(z) = 0.

Exercise 5.2. Show that the two-dimensional map

Fa i B) = [a‘ﬁy‘ﬂ,

; (5.3)

has saddle-node bifurcations along o = —W.

Theorem 5.2. Consider (5.1) where f is C* (k >
3). Suppose

i) f(0;0) =
p=0),
it) %(0; 0) = —1 (the associated stability multi-

plier is —1),

_ [ &*f 10f0f
“Z) = (8”81‘ + 5%@) (z;1)=(0,0)

(transversality condition),
# 0

) 20\ 2 3
w 5= (3(5)" +355)
(z31)=(0,0)

(non-degeneracy condition,).

0 (x = 0 is a fized point when

Then there exists § > 0 and a unique C*~' function
€:[-9,0] = R with

such that f*(z,&(z)) = for all x € [-6,6].

e Note that in the last line of Theorem 5.2, f2
refers to the second iterate of f (not the square
of f).

e If (5.1) satisfies the conditions of Theorem 5.2,
we say that (5.1) has a period-doubling bifurca-
tion at ;= 0. Here a fixed point changes stabil-
ity and a period-2 solution is created.

Exercise 5.3. Consider

flain) = 2% +n. (5.4)

i) Compute fixed points and period-2 solutions
of (5.4). HINT: These can both be expressed
as the roots of a quadratic equation.

ii) Show that (5.4) has a period-doubling bifur-
cation at n = %.

e Lastly, consider the two-dimensional map
x = f(x;p), (5.5)
where f : R? x R — R.

Theorem 5.3. Consider (5.5) where f is C* (k >
4). Suppose



i) f(0; 1) = 0 for all p in a neighbourhood of 0
(x =0 is a fized point for small 1),

i) Df(0;p) has eigenvalues r(p)e™ W) with
r(0) = 1 and ™) £ 1 forn =1,2,3,4 (at
w =0 the associated stability multipliers have
modulus 1 and are not strongly resonant ),

iii) v'(0) # 0 (transversality condition),

i) a # 0 where « is the first Lyapunov coeffi-
cient” (non-degeneracy condition).

Then (5.5) has an invariant topological circle, of
size asymptotically proportional to \/|u|, emanat-
ing from x = 0 for either p <0 or p > 0.

e If (5.5) satisfies the conditions of Theorem 5.3,
we say that (5.5) has a Neimark-Sacker bifurca-
tion at ;= 0. Here a fixed point changes stabil-
ity and an invariant circle is created on which the
dynamics may be quasiperiodic or weakly reso-
nant.

6 A first look at the logistic family

e The one-parameter family of maps

fa(z) = ax(1l — x), (6.1)

where a € [0,4], is known as the logistic family.
For all a € [0,4], f, is an S-unimodal map on
[0,1] and so has a unique attractor.

e Fig. 2 shows a bifurcation diagram of (6.1) illus-
trating this attractor.

e A transcritical bifurcation occurs at a = 1.
Period-doubling bifurcations occur at aq,as, ...
where the first few values are given by:

k ak period created F}.

1 3 2

2| 3.4494 . .. 4 4.7514...
31 3.5440... 8 4.6562. ..
4| 3.5644 ... 16 4.6683. ..
5 | 3.5687. .. 32 4.6686. ..

e This is known as a period-doubling cascade. Such
cascades are observed in many dynamical sys-
tems and provide a simple ‘route to chaos’.

e In the above table
ap — k-1

F, = .
Ok+1 — Ak

(6.2)
The limit
lim Fj, = 4.6692. ..

known as Feigenbaum’s constant, describes the
asymptotic rate at which the period-doubling bi-
furcations occur. Importantly, this constant is
universal in the sense that all S-unimodal maps

exhibit period-doubling cascades at this rate.

Exercise 6.1. Use MATLAB to show that f; ap-
pears to exhibit sensitive dependence on initial con-
ditions.

Exercise 6.2. Consider the alternate quadratic
family

a(y) =y* = 0. (6.4)
where b € [—1,2]. Here we show that (6.4) is
equivalent to (6.1) for a € [1,4].

i) Show that y* = 1 +
(6.4).

ii) Show that the affine coordinate change = =
[yfy_j converts (6.4) into (6.1) with a = 2y* €

% + b is a fixed point of

7 Lyapunov exponents

e Lyapunov exponents measure the asymptotic
rate at which nearby orbits converge or diverge.
They can be defined for both ODEs and maps.
Here we consider a smooth map f : RV — RY.

e Let x € RY be a point, let n € RY with |[n| = 1
be a unit vector, and let § > 0 be small. Then
X 4 dn represents the perturbation from x in di-
rection n of magnitude 5. We are interested in
the difference between f™(x 4 dn) and f"(x) for
large values of n.

e It is reasonable to assume that
[ (x +dn) — fr(x)]| ~ seX",

for some x € R. This can be rearranged to pro-
duce

o~ (G an) - Gl ). ()

"See for instance [11] or hittp://www.scholarpedia.org/article/Neimark-Sacker_bifurcation.
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Figure 2: A bifurcation diagram of the logistic family (6.1).

This motivates defining x by taking the limits
0 — 0 and n — oo in (7.1) giving

1 n
X = Jm in([(Df)Goml), (72
assuming the limit in (7.2) exists.

A quite technical theorem of Oseledet® tells us
that, under certain conditions that in practice
usually hold, the limit in (7.2) does exist and for
fixed x and all n can at take most IV values (these
are the Lyapunov exponents of f at x).

The mazimal Lyapunov exponent, call it YXmax, 18
most important because (7.2) takes this value for
almost all n.

If f*(x) converges to a hyperbolic, asymptoti-
cally stable fixed point x* of f, typically it will
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