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Maps model discrete-time phenomena and arise as return maps (Poincaré maps) in ODE systems. As
we saw in Part VI, chaotic dynamics in the Rössler system is well-approximated by a one-dimensional
unimodal map. It is therefore important to study maps, and with one-dimensional unimodal maps we
hope to obtain a deeper understanding of chaos.

1 Dynamical systems definitions

• We consider a map

x 7→ f(x), (1.1)

where f : X → X is continuous. We write

fn = f ◦ f ◦ · · · ◦ f
︸ ︷︷ ︸

n times

(1.2)

for the composition of f with itself n times.
Given x ∈ X , the point fn(x) is called the nth

iterate of x under f .

• Many dynamical systems concepts that we have
studied for ODEs generalise naturally to maps.
The difference is that now time is discrete in-
stead of continuous. Here we redefine some key
definitions for (1.1).

Definition 1.1. A fixed point of (1.1) is a point
x∗ ∈ X for which f(x∗) = x∗.

Definition 1.2. A forward invariant region of
(1.1) is a set Ω ⊂ X for which f(Ω) ⊂ Ω. A trap-
ping region is a non-empty, compact set Ω ⊂ X for
which f(Ω) ⊂ int(Ω).

Definition 1.3. A set Λ ⊂ X is said to be an at-
tracting set of (1.1) if there exists a trapping region
Ω such that

Λ =
∞⋂

n=0

fn(Ω).

An attractor is an attracting set that contains a
dense orbit.

2 Aspects of one-dimensional maps

• As an example, consider the map

f(x) = 1− 6x2 + 6x3, (2.1)

shown in Fig. 1.
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Figure 1: A cobweb diagram for the map (2.1).

• We can sketch orbits of a one-dimensional map,
such as (2.1), as follows. We first draw the 45◦

line, f(x) = x. Given an initial value u, we
start at the point (u, u), then draw a vertical
line segment to the graph of f , then continue
with a horizontal line segment back to the 45◦

line. These two line segments take us to the point
(
f(u), f(u)

)
. By repeating these steps, as shown

in Fig. 1 using u = 0.6, we can compute the
forward orbit of u. This is known as a cobweb
diagram.
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• Cobweb diagrams allow us to effectively simulate
iterations of the map by hand and can be used to
determine the qualitative nature of the dynamics
without the need for a computer.

Exercise 2.1. For the map

f(x) =

{
1
4x+ 1, x ≤ 0,

−2x+ 1, x ≥ 0,
(2.2)

draw a cobweb diagram to illustrate the forward
orbit of u = 0. What do you think the orbit con-
verges to?

• The next result (first given in [1]) involves the
following alternate ordering of the positive inte-
gers:

3 ⊲ 5 ⊲ 7 ⊲ 9 ⊲ 11 ⊲ · · ·

⊲ 2 · 3 ⊲ 2 · 5 ⊲ 2 · 7 ⊲ 2 · 9 ⊲ 2 · 11 ⊲ · · ·

⊲ 22 · 3 ⊲ 22 · 5 ⊲ 22 · 7 ⊲ 22 · 9 ⊲ 22 · 11 ⊲ · · ·

· · ·

⊲ 32 ⊲ 16 ⊲ 8 ⊲ 4 ⊲ 2 ⊲ 1

Theorem 2.1 (Sharkovskii’s theorem). Let f :
R → R be continuous. Suppose f has a period-n
orbit (i.e. fn(x) = x, for some x ∈ R). Then, for
all m ⊳ n, f also has a period-m orbit.

• In particular, this theorem tells us that if f has
a period-3 orbit, then it has orbits of every pe-
riod! In [2], Li and Yorke went one step further
and showed that in this instance f must also be
chaotic.

• We will not prove Sharkovskii’s theorem, just
give a brief example to illustrate the type of ar-
guments that are involved. More details are pre-
sented in [3].

Example 2.1. Suppose a continuous map f : R →
R has a period-n solution, for some n > 1. Show
that f also has a fixed point.

Let xmin and xmax denote the minimum and
maximum points of the period-n solution. Then

f(xmin) > xmin, whilst f(xmax) < xmax. Since f

is continuous, by the intermediate value theorem
f(x) = x for some x ∈ (xmin, xmax).

• The next discussion concerns maps on [0, 1]. This
is because we are commonly only interested in
the dynamics of a map in some forward invari-
ant region. For a one-dimensional map we can
usually assume this region is an interval and by
a change of coordinates can assume it is [0, 1].

Definition 2.1. A continuous map f : [0, 1] →
[0, 1] is said to be unimodal if there exists c ∈ (0, 1)
such that either f(x) < c for all x 6= c or f(x) > c

for all x 6= c. Furthermore, f is said to be S-
unimodal if it is C3 and the Schwarzian derivative

Sf =
f ′′′

f ′
−

3

2

(
f ′′

f ′

)2

, (2.3)

is non-positive in [0, c) ∪ (c, 1].

Exercise 2.2. Consider f(x) = ax+b
cx+d

, where
a, b, c, d ∈ R. Show that (Sf)(x) = 0 for all x ∈ R

with cx+ d 6= 0.

Exercise 2.3. Argue that to understand S-
unimodal maps it suffices to assume f(c) = 1 and
f(1) = 0.

• The next result, taken from [4], essentially says
that any S-unimodal map with non-degenerate1

extremum has a unique attractor and that this
attractor has one of three possible structures.

Theorem 2.2. Let f : [0, 1] → [0, 1] be a S-
unimodal map with extremum c ∈ (0, 1). Suppose
f(c) = 1, f(1) = 0 and f ′′(c) 6= 0. Then there ex-
ists a unique attractor Λ ⊂ [0, 1] such that Λ = ω(x)
for almost all2 x ∈ [0, 1] and either

i) Λ is periodic solution,

ii) Λ is a cycle of disjoint intervals3, or

iii) Λ is a Feigenbaum-like attractor4.

1Here non-degenerate means f ′′(c) 6= 0. If f ′′(c) = 0 additional complications are possible, see [5].
2The phrase ‘almost all x ∈ [0, 1]’ will be defined in Part VIII. It essentially means ‘with probability 1 for randomly chosen

x ∈ [0, 1]’.
3That is, Λ =

⋃
n−1

i=0
Ii, where I0, . . . , In−1 are disjoint intervals in [0, 1] and f(I0) = I1, f(I1) = I2, . . . , f(In−1) = I0.

4A Feigenbaum-like attractor is a certain type of Cantor set, see for instance [4].
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3 Fixed points and stability

Definition 3.1. A fixed point x∗ of (1.1) is said
to be Lyapunov stable if for all ε > 0 there exists
δ > 0 such that fn(x) ∈ Bε(x

∗) for all x ∈ Bδ(x
∗)

and all n ≥ 0.

Definition 3.2. A fixed point x∗ of (1.1) is said
to be asymptotically stable if it is Lyapunov stable
and there exists δ > 0 such that fn(x) → x∗ as
n → ∞ for all x ∈ Bδ(x

∗).

Exercise 3.1. Consider the linear map

x 7→ Ax, (3.1)

where A is a real-valued N×N matrix. Notice that
for any x ∈ R

N we have fn(x) = Anx.

i) Show that if |λ| < 1 for every eigenvalue λ

of A, then 0 is an asymptotically stable fixed
point of (3.1).

ii) Show that if |λ| > 1 for some eigenvalue λ of
A, then 0 is not a Lyapunov stable fixed point
of (3.1).

• If f is smooth, or at least C1, then, analogous to
the Hartman-Grobman theorem for ODEs, the
dynamics near a fixed point of (1.1) are well-
approximated by the linearisation of (1.1) about
the fixed point. For instance, we have the follow-
ing result which generalises the previous exercise.

Theorem 3.1. Let x∗ be a fixed point of (1.1) and
suppose f is C1.

i) If |λ| < 1 for every eigenvalue λ of Df(x∗),
then x∗ is an asymptotically stable fixed point
of (1.1).

ii) If |λ| > 1 for some eigenvalue λ of Df(x∗),
then x∗ is not a Lyapunov stable fixed point
of (1.1).

• The eigenvalues of Df(x∗) are called the stability
multipliers of x∗.

• Here we consider the linear map (3.1) in two-
dimensions and write

A =

[
a b

c d

]

. (3.2)

The stability multipliers of the fixed point 0 are
the roots of λ2 − τλ+ δ = 0 where

τ = a+ d, δ = ad− bc. (3.3)

• Solving |λ| = 1 produces three cases:

i) λ = 1; here δ = τ − 1.

ii) λ = −1; here δ = −τ − 1.

iii) λ = eiφ for some φ ∈ (0, π); here δ = 1 and
τ ∈ (−2, 2).

The origin 0 is stable in the triangle of the (τ, δ)-
plane bounded by the lines (i), (ii), and (iii).

4 Structural stability

• To motivate the ideas in this section, consider
the one-dimensional linear map

f(x) = x
2 . (4.1)

Here 0 is the unique fixed point of (1.1) and is
asymptotically stable (the stability multiplier is
1
2 ).

• Intuitively we think of the stable fixed point 0
as a ‘robust’ feature of (4.1) in the sense that if
we change the map by a small amount, then a
single stable fixed point should persist. But we
must be careful, as the following example shows.
For any ε > 0, let kε = 1

2eε2
. The range of the

function

gε(x) = xe−kεx
2

, (4.2)

is [−ε, ε], that is ‖gε‖∞ = ε. Yet the map

f(x) = x
2 + gε(x), (4.3)

has three fixed points including 0 which is now
unstable (the stability multiplier is 3

2). In sum-
mary, we have changed the qualitative behaviour
of the map near an asymptotically stable fixed
point by applying an arbitrarily small continu-
ous perturbation.

• The catch in this example is that the deriva-
tive of the perturbation is not small (specifically
dgε
dx

(0) = 1). This highlights the fact that the
class of perturbations that we allow is critically
important to the robustness and structural sta-
bility of the features of a map.
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• Structural stability was introduced for families
of ODEs in Part V. Here we reformulate this for
(i) families of maps, and (ii) perturbations of a
single map.

Definition 4.1. Two maps f1 : X1 → X1 and
f2 : X2 → X2 are said to be conjugate if there exists
a homeomorphism h : X1 → X2 such that

h(f1(y)) = f2(h(y)), for all y ∈ X1 . (4.4)

Definition 4.2. A family of maps

x 7→ f(x;µ), (4.5)

where f : X × R
m → X , is structurally stable at a

given value of µ if xi+1 = f(xi; µ̃) is conjugate to
xi+1 = f(xi;µ) for all µ̃ in some neighbourhood of
µ.

• In order to describe structural stability more gen-
erally we need to think about spaces of functions.
For simplicity we consider only phase spaces X
that are compact. We begin in one dimension.

Definition 4.3. For any k ≥ 0, the Ck-norm of a
Ck function f : [a, b] → R is

‖f‖Ck = ‖f‖∞ + ‖f ′‖∞ + · · · + ‖f (k)‖∞ . (4.6)

• The space of Ck functions f : [a, b] → R together
with the Ck-norm is a Banach space.

Definition 4.4. Let f : [a, b] → [a, b] be Ck. The
map

x 7→ f(x), (4.7)

is said to be Ck structurally stable (or structurally
stable in the Ck topology) if there exists δ > 0 such
that

x 7→ f(x) + g(x), (4.8)

is conjugate to (4.7) for every Ck g on [a, b] with
‖g‖Ck < δ.

• For example, it can be shown that (4.1) is C1

structurally stable, but, as we found above, (4.1)
is not C0 structurally stable.

• The same ideas work in higher dimensions, but
it is more complicated to write (4.6) because the
ith derivative of a function f : RN → R

N is an
(i+ 1)-order tensor.

• In brief, a Ck map f on a smooth compact man-
ifold X is Ck structurally stable if there exists
δ > 0 such that every f̃ ∈ Bδ(f) (in the space of
Ck maps on X equipped with the Ck topology)
is conjugate to f .

• Finally we provide a technical but important re-
sult that provides an equivalence between the
seeming disparate notions of structural stability
and hyperbolicity. This was first proved in [6],
see also [7].

Definition 4.5. A C1 map f on a smooth mani-
fold X is said to be Axiom A if the non-wandering
set5 of f is compact and hyperbolic6 and the set of
periodic points of f is dense in the non-wandering
set.

Theorem 4.1. A C1 map f on a smooth compact
manifold X is C1 structurally stable if and only if
it is Axiom A.

5 Bifurcations

• As we saw in Part VI, bifurcations are critical
parameter values at which structural stability is
lost.

• Here we study codimension-one bifurcations of
fixed points. These are described in [8, 9, 10]
and in more detail in [11].

Definition 5.1. A fixed point x∗ of (1.1) is said to
be hyperbolic if no eigenvalue of Df(x∗) has mod-
ulus 1.

• Non-hyperbolicity occurs if Df(x∗) has (i) an
eigenvalue 1, (ii) an eigenvalue −1, or (iii) eigen-
values e±iφ, where φ ∈ (0, π). These corre-
spond to (i) saddle-node bifurcations, (ii) period-
doubling (or flip) bifurcations, and (iii) Neimark-
Sacker bifurcations.

5The non-wandering set is all points x ∈ X with the property that for all ε > 0 and all m ≥ 0 there exists n ≥ m such
that fn(x) ∈ Bε(x). That is, the forward orbit of x repeatedly comes arbitrarily close to x (it doesn’t wander away).

6This essentially means that the non-wandering set has no centre manifold.
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• We now describe these, in order, in the lowest
possible number of dimensions. In higher dimen-
sions the bifurcations behave in the same way
(on extended centre manifolds).

• First, consider the one-dimensional map

x 7→ f(x;µ), (5.1)

where f : R× R → R.

Theorem 5.1. Consider (5.1) where f is Ck (k ≥
2). Suppose

i) f(0; 0) = 0 (x = 0 is a fixed point when
µ = 0),

ii) ∂f
∂x

(0; 0) = 1 (the associated stability multi-
plier is 1),

iii) ∂f
∂µ

(0; 0) 6= 0 (transversality condition),

iv) ∂2f
∂x2 (0; 0) 6= 0 (non-degeneracy condition).

Then there exists δ > 0 and a unique Ck function
ξ : [−δ, δ] → R with

ξ(0) = 0,

ξ′(0) = 0,

ξ′′(0) = −
∂2f
∂x2 (0; 0)
∂f
∂µ

(0; 0)
,

such that f(x, ξ(x)) = x for all x ∈ [−δ, δ].

• If (5.1) satisfies the conditions of Theorem 5.1,
we say that (5.1) has a saddle-node bifurcation
at µ = 0. Here two fixed points (one stable, one
unstable) collide and annihilate.

Exercise 5.1. Consider the one-dimensional map

f(x; γ) =
1

x
+ γx2. (5.2)

Find γ > 0 at which (5.2) has a saddle-node bi-
furcation. Hint: Either (i) solve f(x; γ) = x

and ∂f
∂x

(x; γ) = 1 simultaneously, or (ii) rearrange
f(x; γ) = x as γ = h(x) and solve h′(x) = 0.

Exercise 5.2. Show that the two-dimensional map

f(x, y;α, β) =

[
α− βy − x2

x

]

, (5.3)

has saddle-node bifurcations along α = − (β+1)2

4 .

Theorem 5.2. Consider (5.1) where f is Ck (k ≥
3). Suppose

i) f(0; 0) = 0 (x = 0 is a fixed point when
µ = 0),

ii) ∂f
∂x

(0; 0) = −1 (the associated stability multi-
plier is −1),

iii) α =
(

∂2f
∂µ∂x

+ 1
2
∂f
∂µ

∂2f
∂x2

)∣
∣
∣
(x;µ)=(0,0)

6= 0

(transversality condition),

iv) β =

(

1
2

(
∂2f
∂x2

)2
+ 1

3
∂f3

∂x3

)∣
∣
∣
∣
(x;µ)=(0,0)

6= 0

(non-degeneracy condition).

Then there exists δ > 0 and a unique Ck−1 function
ξ : [−δ, δ] → R with

ξ(0) = 0,

ξ′(0) = 0,

ξ′′(0) = −
β

α
,

such that f2(x, ξ(x)) = x for all x ∈ [−δ, δ].

• Note that in the last line of Theorem 5.2, f2

refers to the second iterate of f (not the square
of f).

• If (5.1) satisfies the conditions of Theorem 5.2,
we say that (5.1) has a period-doubling bifurca-
tion at µ = 0. Here a fixed point changes stabil-
ity and a period-2 solution is created.

Exercise 5.3. Consider

f(x; η) = x2 + η. (5.4)

i) Compute fixed points and period-2 solutions
of (5.4). Hint: These can both be expressed
as the roots of a quadratic equation.

ii) Show that (5.4) has a period-doubling bifur-
cation at η = 3

4 .

• Lastly, consider the two-dimensional map

x 7→ f(x;µ), (5.5)

where f : R2 × R → R.

Theorem 5.3. Consider (5.5) where f is Ck (k ≥
4). Suppose
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i) f(0;µ) = 0 for all µ in a neighbourhood of 0
(x = 0 is a fixed point for small µ),

ii) Df(0;µ) has eigenvalues r(µ)e±iφ(µ) with
r(0) = 1 and einφ(0) 6= 1 for n = 1, 2, 3, 4 (at
µ = 0 the associated stability multipliers have
modulus 1 and are not strongly resonant),

iii) r′(0) 6= 0 (transversality condition),

iv) α 6= 0 where α is the first Lyapunov coeffi-
cient7 (non-degeneracy condition).

Then (5.5) has an invariant topological circle, of
size asymptotically proportional to

√

|µ|, emanat-
ing from x = 0 for either µ < 0 or µ > 0.

• If (5.5) satisfies the conditions of Theorem 5.3,
we say that (5.5) has a Neimark-Sacker bifurca-
tion at µ = 0. Here a fixed point changes stabil-
ity and an invariant circle is created on which the
dynamics may be quasiperiodic or weakly reso-
nant.

6 A first look at the logistic family

• The one-parameter family of maps

fa(x) = ax(1− x), (6.1)

where a ∈ [0, 4], is known as the logistic family.
For all a ∈ [0, 4], fa is an S-unimodal map on
[0, 1] and so has a unique attractor.

• Fig. 2 shows a bifurcation diagram of (6.1) illus-
trating this attractor.

• A transcritical bifurcation occurs at a = 1.
Period-doubling bifurcations occur at a1, a2, . . .

where the first few values are given by:

k ak period created Fk

1 3 2
2 3.4494 . . . 4 4.7514 . . .
3 3.5440 . . . 8 4.6562 . . .
4 3.5644 . . . 16 4.6683 . . .
5 3.5687 . . . 32 4.6686 . . .

• This is known as a period-doubling cascade. Such
cascades are observed in many dynamical sys-
tems and provide a simple ‘route to chaos’.

• In the above table

Fk =
ak − ak−1

ak+1 − ak
. (6.2)

The limit
lim
k→∞

Fk = 4.6692 . . . (6.3)

known as Feigenbaum’s constant, describes the
asymptotic rate at which the period-doubling bi-
furcations occur. Importantly, this constant is
universal in the sense that all S-unimodal maps
exhibit period-doubling cascades at this rate.

Exercise 6.1. Use Matlab to show that f4 ap-
pears to exhibit sensitive dependence on initial con-
ditions.

Exercise 6.2. Consider the alternate quadratic
family

gb(y) = y2 − b. (6.4)

where b ∈
[
−1

4 , 2
]
. Here we show that (6.4) is

equivalent to (6.1) for a ∈ [1, 4].

i) Show that y∗ = 1
2 +

√
1
4 + b is a fixed point of

(6.4).

ii) Show that the affine coordinate change x =
y∗−y
2y∗ converts (6.4) into (6.1) with a = 2y∗ ∈
[1, 4].

7 Lyapunov exponents

• Lyapunov exponents measure the asymptotic
rate at which nearby orbits converge or diverge.
They can be defined for both ODEs and maps.
Here we consider a smooth map f : RN → R

N .

• Let x ∈ R
N be a point, let n ∈ R

N with ‖n‖ = 1
be a unit vector, and let δ > 0 be small. Then
x+ δn represents the perturbation from x in di-
rection n of magnitude δ. We are interested in
the difference between fn(x+ δn) and fn(x) for
large values of n.

• It is reasonable to assume that

‖fn(x+ δn) − fn(x)‖ ∼ δeχn,

for some χ ∈ R. This can be rearranged to pro-
duce

χ ∼
1

n
ln

(
1

δ
‖fn(x+ δn)− fn(x)‖

)

. (7.1)

7See for instance [11] or http://www.scholarpedia.org/article/Neimark-Sacker bifurcation.
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Figure 2: A bifurcation diagram of the logistic family (6.1).

This motivates defining χ by taking the limits
δ → 0 and n → ∞ in (7.1) giving

χ = lim
n→∞

1

n
ln(‖(Dfn)(x)n‖), (7.2)

assuming the limit in (7.2) exists.

• A quite technical theorem of Oseledet8 tells us
that, under certain conditions that in practice
usually hold, the limit in (7.2) does exist and for
fixed x and all n can at take mostN values (these
are the Lyapunov exponents of f at x).

• The maximal Lyapunov exponent, call it χmax, is
most important because (7.2) takes this value for
almost all n.

• If fn(x) converges to a hyperbolic, asymptoti-
cally stable fixed point x∗ of f , typically it will

do so asymptotic to the slowest eigendirection.
In this case χmax < 0 and is equal to the natural
log of the modulus of the eigenvalue of (Df)(x∗)
with largest modulus.

• If f exhibits sensitive dependence on initial con-
ditions, then we usually have χmax > 0. Com-
pared with other aspects of chaos, it is relatively
straight-forward to compute maximal Lyapunov
exponents numerically (although some diligence
is often required to calculate them to more than
two significant figures). For this reason, to de-
cide whether or not a given dynamical system is
chaotic, it is common to simply look at the sign
of a numerically computed maximal Lyapunov
exponent.
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