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Here we look at some advanced approaches for studying maps with the over-riding aim of obtaining a
deeper understanding of chaos. This is the most technical part of the course; we will be using techniques
from functional analysis and statistics. For additional guidance on the topics that follow, as well as the
library books listed in the course outline, you may find Scholarpedia and Wikipedia particularly helpful.

1 The shift map

• The shift map, defined precisely in a moment, is
a map that acts on a space of sequences. Here
we consider only binary sequences: sequences in-
volving two different symbols. We will denote
these symbols L and R, for reasons that will be-
come apparent in §2.

• An example of one of our sequences is S =
LLRLRL . . . and we write s0 = L, s1 = L,
s2 = R, and so on. Let Σ2 denote the set of
all such sequences.

• A periodic sequence of period n is the infinite
concatenation of a word of length n, and we de-
note it as the ∞th power of the word. For ex-
ample, we write LRLRLRLR . . . = (LR)∞ (a
period-2 sequence).

• We can also use this notation to abbre-
viate sequences that are eventually periodic,
e.g. RRLLLLLL . . . = RRL∞.

Definition 1.1. The distance between any S, T ∈
Σ2 is

d(S, T ) =
∞
∑

i=0

1

2i

{

0 , si = ti
1 , si 6= ti

}

. (1.1)

• Notice how differences in earlier symbols give
greater value to the distance. Notice also that
the diameter of Σ2 is 2.

Exercise 1.1. Show that the distance between L∞

and (LR)∞ is 2
3 .

Exercise 1.2. Find two sequences a distance 13
16

from L∞.

• Proofs of the following two results are relatively
straight-forward and left to the reader.

Lemma 1.1. Let S, T ∈ Σ2 and n ≥ 0. If si = ti
for all i = 0, 1, . . . , n, then d(S, T ) ≤ 1

2n .

Lemma 1.2. The distance d is a metric on the
space Σ2 (hence (Σ2, d) is a metric space).

Definition 1.2. The shift map σ : Σ2 → Σ2 is
defined by σ(S) = s1s2 . . . (that is, all symbols
shift one place to the left and the first symbol is
dropped).

• The shift map has two fixed points: L∞ and R∞,
and two period-2 solutions: (LR)∞ and (RL)∞.
More generally, if W is a primitive word (that
is, it cannot be written as a power) of length n,
then W∞ is a period-n solution of the shift map.

Lemma 1.3. The shift map is a continuous func-
tion on Σ2 (with respect to the metric d).

Proof. Let ε > 0 and choose any S ∈ Σ2.

Claim: There exists δ > 0 such that for
all T ∈ Bδ(S) we have σ(T ) ∈ Bε(σ(S)).

Let δ = ε
2 . Choose any T ∈ Bδ(S). We can assume

s0 = t0 (say by requiring ε < 1), then

d(σ(S), σ(T )) = 2d(S, T ) < 2δ = ε.

That is, σ(T ) ∈ Bε(σ(S)), as required.

Lemma 1.4. The shift map is transitive.

Proof. Let ε > 0 and choose any S, T ∈ Σ2.

Claim: There exists U ∈ Σ2 and i1, i2 ≥ 0
such that σi1(U) ∈ Bε(S) and σi2(U) ∈
Bε(T ).
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We define U rather cleverly as follows: let the first
two symbols of U be L and R, let the next eight
symbols of U consist of all four words of length 2,
let the next 24 symbols of U consist of all eight
words of length 3, and so on. For example

U = LRLLLRRLRRLLLLLR . . .

Let n ≥ 0 be such that 1
2n < ε. By construction,

the first n + 1 elements of S appear somewhere in
U as a block. That is, the first n+ 1 elements of S
and σi1(U) are the same, for some i1 ≥ 0. Then by
Lemma 1.1,

d
(

S, σi1(U)
)

≤ 1

2n
< ε,

and similarly there exists such an i2.

Lemma 1.5. The shift map exhibits sensitive de-
pendence on initial conditions on Σ2.

Proof.

Claim: There exists β > 0 such that
for all S ∈ Σ2 and ε > 0 there ex-
ists T ∈ Bε(S) and n ≥ 0 such that
d(σn(S), σn(T )) ≥ β.

Let β = 1. Let ε > 0 and choose any S ∈ Σ2. Let
n ≥ 0 be such that 1

2n < ε. Define T by ti = si for
all i 6= n. Then d(S, T ) = 1

2n , hence T ∈ Bε(S).
The sequences σn(S) and σn(T ) differ only in their
first symbols, hence

d(σn(S), σn(T )) = 1 ≥ β,

as required.

• We conclude that σ is chaotic in the sense that
it is transitive and has sensitive dependence on
initial conditions.

2 The tent map

• Here we study the tent map:

T (x) =

{

2x, x ≤ 1
2 ,

2− 2x, x ≥ 1
2 ,

(2.1)

on the invariant interval [0, 1].

Exercise 2.1. Use the function h(x) = sin2
(

πx
2

)

(a
homeomorphism on [0, 1]) to show that T is conju-
gate to f4 (the logistic map with a = 4).

Exercise 2.2. Find a period-3 solution of T .
Hint: There are two of them. Explain how this
shows that f4 is chaotic.

• Now we define a function h : [0, 1] → Σ2 as fol-
lows. For any x ∈ [0, 1] and i ≥ 0, let

si =

{

L, T i(x) ≤ 1
2 ,

R, T i(x) > 1
2 .

(2.2)

Then set S = h(x), where S = s0s1 . . .. The se-
quence h(x) is the symbolic representation of the
forward orbit of x relative to x = 1

2 .

• More generally, almost any one-dimensional map
can be assigned symbols in this way, where two
symbols suffice for unimodal maps (although
sometimes it is helpful to assign a third sym-
bol for the critical point), and more symbols are
needed for maps with two or more critical points.

Exercise 2.3. Show that

h(0.11) = LLL(RLLRLLLRRR)∞.

Exercise 2.4. Find x ∈ [0, 1] such that
d(h(x), h(0.4)) = 2.

• Notice that

h ◦ T = σ ◦ h, (2.3)

on [0, 1]. It may be shown that h−1 is continuous
and onto but not one-to-one [1]. Thus h does not
quite show that T and σ are conjugate. In this
instance we say that σ is semi-conjugate to T ,
which, roughly speaking, means that T exhibits
all of the dynamics of σ.

3 An introduction to kneading theory

• Here we introduce kneading theory (pioneered by
Milnor and Thurston in the late 1970’s, see [2])
which allows us to make remarkably strong state-
ments about the dynamics of a one-dimensional
map based purely on the symbol sequences asso-
ciated with its critical points.

• Let f : [0, 1] → [0, 1] be a unimodal map with
maximum c ∈ (0, 1).
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• For any x that is not a preimage of c (meaning
there does not exist i ≥ 0 such that f i(x) = c),
let h(x) = S ∈ Σ2 where

si =

{

L, f i(x) < c,

R, f i(x) > c.
(3.1)

• For all x 6= c, let

a(x) =

{

1, x < c,

−1, x > c.
(3.2)

• For any x that is not a preimage of c and all
n ≥ 0, let

θn(x) =
n
∏

i=0

a
(

f i(x)
)

. (3.3)

Exercise 3.1. Show that θi(x) is the sign of the
slope of f i at x.

• The sequence θ0(x), θ1(x), . . . is similar to the
symbol sequence h(x), but θi(x) ∈ {−1, 1}
whereas si ∈ {L,R}, and each θi(x) is given by
a product involving previous iterates whereas si
is given by the sign of x− c.

• Instead of working with sequences φ0, φ1, . . .
(where φi = θi(x) for each i), we find it more ele-
gant to work with power series Φ(t) =

∑∞
i=0 φit

i.

Definition 3.1. Analogous to (1.1), the distance
between any two power series Φ(t) =

∑∞
i=0 φit

i and
Ψ(t) =

∑∞
i=0 ψit

i with φi, ψi ∈ {−1, 1} for all i, is

d(Φ,Ψ) =
∞
∑

i=0

1

2i

{

0 , φi = ψi

1 , φi 6= ψi

}

. (3.4)

Definition 3.2. We define a lexiographical order-
ing on power series with coefficients of 1 or −1 as
follows. For any distinct Φ and Ψ, let i be the
smallest index for which φi 6= ψi. If φi < ψi we
write Φ ≺ Ψ, otherwise we write Φ ≻ Ψ.

Definition 3.3. The kneading series of any x that
is not a preimage of c is

k(x, t) =

∞
∑

i=0

θi(x)t
i. (3.5)

The kneading series (plural!) of any x that is a
preimage of c are

k(x−, t) = lim
y→x−

k(y, t), (3.6)

k(x+, t) = lim
y→x+

k(y, t), (3.7)

where the limits are taken through points y that are
not preimages of c (this can always be achieved).

Exercise 3.2. Show that k(c−, t) = −k(c+, t).
Exercise 3.3. Show that if x is not a preimage of
c, then

k(f(x), t) = a(x)σ(k(x, t)).

Exercise 3.4. Show that as a function of x, k(x, t)
is decreasing in lexiographical order.

Definition 3.4. The kneading invariant is

kf (t) = k(c−, t). (3.8)

• The following result highlights the convenience
of working with power series over sequences.

Theorem 3.1. The topological entropy1 of f is
positive if and only if kf (t) = 0 for some t ∈
(−1, 1).

• The next result shows us how we can use the
kneading invariant to determine which symbol
sequences are possible for f .

Theorem 3.2. Suppose f(c) > c. A series Φ(t) is
equal to some kneading series of f if and only if,
for all i ≥ 0, either kf (t) � σi(Φ(t)) or −kf (t) �
σi(Φ(t)).

• Equivalently, Φ(t) is not a kneading series of f if
and only if there exists i ≥ 0 such that

−kf (t) ≺ σi(Φ(t)) ≺ kf (t). (3.9)

1A set Ω ⊂ [0, 1] is said to be (n, ε)-separated if for every distinct x, y ∈ Ω there exists i ∈ {0, 1, . . . , n − 1} such that
|f i(x) − f i(y)| ≥ ε. Let s(n, ε) denote the number of elements (i.e. the cardinality) of the largest (n, ε)-separated subset of
[0, 1]. The topological entropy is

h(f) = lim
ε→0

lim sup
n→∞

ln(s(n, ε))

n
,

and is a measure of the growth rate of the number of ‘distinguishable’ orbits under iteration by f .
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Example 3.1. Consider

f4(x) = 4x(1− x). (3.10)

Here c = 1
2 , f(c) = 1, f2(c) = f3(c) = · · · = 0.

Consequently, h(c−) = LRL∞. Thus kf (t) =
1 − t − t2 − t3 − · · · . Notice that this kneading
invariant is special in the sense that there does not
exist Ψ(t) such that −kf (t) ≺ Ψ(t) ≺ kf (t). There-
fore every series Φ(t) is a kneading series of f . In
other words, for every S ∈ Σ2 there exists x ∈ [0, 1]
such that h(x) = S.

Example 3.2. Consider fa = ax(1 − x) with
a = 3.84. Here fa has an attracting period-3 cycle
and

kf (t) = 1− t− t2 − t3 + t4 + t5 + t6 − t7 + · · ·

=
1− t− t2

1 + t3
. (3.11)

Suppose (for a contradiction, as we will see) that
there exists x ∈ [0, 1] such that h(x) = (LRLRL)∞.
Then

k(x, t) = 1− t− t2 + t3 + t4 + t5 − t6 − t7 + · · ·

=
1− t− t2 + t3 + t4

1− t5
.

But

σ2(k(x, t)) = −1 + t+ t2 + t3 − t4 − t5 + t6 + · · · ,

from which we can see that (3.9) is satisfied with
i = 2. Hence k(x, t) is not a kneading series, which
is a contradiction.

Exercise 3.5. Analogous to the previous exam-
ple, use Theorem 3.2 to show that there does exist
x ∈ [0, 1] such that h(x) = (LRLRR)∞ for the map
f3.84.

4 An introduction to measure theory

Definition 4.1. Let X be a set. A collection Σ of
subsets of X is a σ-algebra if it

i) includes ∅,

ii) is closed under complement, and

iii) is closed under the union or intersection of
countably many subsets.

Definition 4.2. A function µ : Σ → R is ameasure
if

i) µ(∅) = 0,

ii) µ(E) ≥ 0, for all E ∈ Σ, and

iii)
∑

k µ(Ek) = µ(∪kEk), for all countable dis-
joint collections Ek ∈ Σ.

Definition 4.3. Let Σ be a σ-algebra of X and
µ : Σ → R a measure. The triple (X ,Σ, µ) is called
a measure space and the elements of Σ are called
measurable sets.

Definition 4.4. Let (X ,Σ, µ) be a measure space.
A property of X is said to hold for µ almost all
x ∈ X (or just almost all x ∈ X , if it is clear which
measure is being referred to) if it holds for all x in
some subset E ⊂ X with µ(X \ E) = 0.

Definition 4.5. Let X be a topological space
(i.e. open sets are defined). A subset E ⊂ X is
called a Borel set if it can be formed from open
sets by a countable combination of unions, inter-
sections, and complements.

Lemma 4.1. The collection of all Borel sets is a
σ-algebra (called the Borel σ-algebra).

Definition 4.6.

i) The Lebesgue measure of a box B = [a1, b1]×
· · · × [an, bn] ⊂ R

n is λ(B) =
∏

j(bj − aj).

ii) Let E ⊂ R
n be a Borel set (this ensures that

following limit exists). The Lebesgue measure
of E is

λ(E) = inf
covering boxesBk

∑

k

λ(Bk).

Lemma 4.2. The Lebesgue measure is a measure
on the Borel σ-algebra.

Definition 4.7. Let (X ,Σ, µ) be a measure space.
A function ϕ : X → R is said to be measurable if
the preimage of every interval (t,∞) belongs to Σ.

Definition 4.8. Let (X ,Σ, µ) be a measure space.

i) The Lebesgue integral of a simple function
s =

∑m
k=1 akχEk

, where ak > 0 and Ek ∈ Σ
for each k, and χE is the indicator function,
is

∫

s dµ =
∑

k

akµ(Ek).
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ii) The Lebesgue integral of a non-negative mea-
surable function ϕ : X → R is

∫

ϕdµ = sup
non−negative simple s≤ϕ

∫

s dµ.

iii) The Lebesgue integral of a measurable func-
tion ϕ : X → R is

∫

ϕdµ =

∫

ϕ+ dµ−
∫

ϕ− dµ,

where

ϕ+(x) =

{

0, ϕ(x) < 0,

ϕ(x), ϕ(x) > 0,

and ϕ−(x) = ϕ+(x)− ϕ(x).

Definition 4.9. A measurable function ϕ : X → R

is said to be Lebesgue integrable if
∫

|ϕ| dµ <∞.

Definition 4.10. Let µ and ν be measures on a
σ-algebra Σ. Then µ is said to be absolutely con-
tinuous (with respect to ν) if µ(E) = 0 for every
E ∈ Σ for which ν(E) = 0.

Theorem 4.3 (Radon-Nikodym). Let µ and ν be
measures on a σ-algebra Σ. There exists a Lebesgue
integrable function g : X → R such that µ(E) =
∫

E
g dν for all E ∈ Σ, if and only if µ is absolutely

continuous with respect to ν.

Definition 4.11. A Radon-Nikodym derivative of
µ (with respect to ν) is a function g : X → R for
which µ(E) =

∫

E
g dν for all E ∈ Σ.

• Radon-Nikodym derivatives are unique up to
zero measure (with respect to ν), so we usually
refer to ‘the’ Radon-Nikodym derivative.

• The Radon-Nikodyn derivative gives us a prac-
tical way to evaluate a Lebesgue integral. For
instance if X = R and µ(E) =

∫

E
g dλ for all E,

then
∫

E

ϕdµ =

∫

E

ϕ(x)g(x) dx. (4.1)

Definition 4.12. A measure µ is said to be a prob-
ability measure if µ(X ) = 1.

Example 4.1. Consider X = R and let

g(x) =
1

√

2πβ2
e

−(x−α)2

2β2 , (4.2)

be the probability density function for a normal (or
Gaussian) distribution with mean α and standard
deviation β. We can define a probability measure
µ by µ(E) =

∫

E
g dλ. The function g is the Radon-

Nikodym derivative of µ. If x ∈ R is chosen ran-
domly according to (4.2), then the probability that
x ∈ E is µ(E), for any measurable E ⊂ R. If E is

an interval [a, b], then µ(E) =
∫ b

a
g(x) dx.

Example 4.2. Consider X = R and let

g(x) = δ(x− α), (4.3)

be the δ-function (or Dirac δ-function) centred at
α.

Strictly speaking we cannot use g to define a
measure via µ(E) =

∫

E
g dλ because g is not a

function (it is a distribution2). Above the Lebesgue
integral was only defined for functions. Neverthe-
less we can define the intended probability measure
δα (known as the Dirac measure centred at α) by

δα(E) =

{

0, α /∈ E,

1, α ∈ E.

For any continuous ϕ : R → R, we have
∫

R
ϕdδα =

ϕ(α) by Definition 4.8. This is the same as

∫ ∞

−∞
ϕ(x)δ(x− α) dx = ϕ(α),

which should be familiar to you from previous en-
counters with the δ-function.

Observe that δα is not absolutely continuous
with respect to λ: with E = {α} we have δα(E) = 1
and λ(E) = 0. Thus by Theorem 4.3 there does
not exist Lebesgue integrable g : R → R such that
δα(E) =

∫

E
g dλ for all measurable E.

2A distribution is a type of ‘generalised function’ not to be confused with a probability distribution.
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5 Invariant measures of maps

• Given a map f : X → X , rather than iterating a
point x ∈ X under f , we may wish to iterate a
measure µ under f .

• That is, if x is a random variable distributed ac-
cording to µ, we would like to determine the sta-
tistical properties of iterates of x under f .

• We write f∗µ to denote the push-forward mea-
sure given by iterating µ under f . It is straight-
forward to see that for any measurable E ⊂ X ,
we have3

(f∗µ)(E) = µ
(

f−1(E)
)

, (5.2)

Definition 5.1. Let (X ,Σ, µ) be a measure space.
Let f : X → X be measurable4. Then µ is an in-
variant density of f if µ

(

f−1(E)
)

= µ(E) for all
E ∈ Σ. We also say that f preserves µ.

• We can also study how the Radon-Nikodym
derivative of a probability measure maps under
f , which is essentially asking how a probability
density function, we will just say density, maps
under f . We write the image of a density g under
f as Pfg, where Pf is the Frobenius-Perron op-
erator. For simplicity, for the remainder of this
section we consider X = R.

• By (5.2) we have
∫

E

(Pfg)(y) dy =

∫

f−1(E)
g(y) dy,

for all measurable E ⊂ R. Putting E = [a, x]
gives

∫ x

a

(Pfg)(y) dy =

∫

f−1([a,x])
g(y) dy.

Then by differentiating we obtain

(Pfg)(x) =
d

dx

∫

f−1([a,x])
g(y) dy. (5.3)

• If g is invertible and increasing then f−1([a, x]) =
[

f−1(a), f−1(x)
]

and so

(Pfg)(x) = g
(

f−1(x)
) d

dx

(

f−1(x)
)

. (5.4)

Exercise 5.1. Consider the map f(x) = x2 on
[0, 1] and the density g(x) = 1 (corresponding
to uniform distribution). Use (5.4) to compute
(Pfg)(x) and (P 2

f g)(x).

• We now have the mathematical tools to make
more detailed remarks about the logistic family
that we first encountered in Part VII:

fa(x) = ax(1− x). (5.5)

Exercise 5.2. Let g be a probability density on
[0, 1], that is g : [0, 1] → [0,∞) is Lebesgue inte-
grable and

∫ 1
0 g(x) dx = 1. Show that

(Pf4g)(x) =
1

4
√
1−x

(

g
(

1
2 − 1

2

√
1− x

)

+ g
(

1
2 + 1

2

√
1− x

)

)

.

Hint: Use (5.3).

Exercise 5.3. Show that

g(x) =
1

π
√

x(1− x)
, (5.6)

is an invariant probability density of f4. Hint:
To show that g(x) is normalised observe that
d
dx

sin−1(
√
x) = 1

2
√

x(1−x)
.

Exercise 5.4. Show that

g(x) =
1

2
δ
(

x− 5+
√
5

8

)

+
1

2
δ
(

x− 5−
√
5

8

)

,

is an invariant probability density of f4 (ignoring
the fact that strictly speaking g is not Lebesgue
integrable).

• Recall from the bifurcation diagram of fa that
the apparently chaotic regime is interpersed with
‘periodic windows’ (where fa is not chaotic).
The next result (which was first proved only re-
cently by applying quite difficult complex vari-
ables techniques to fa as an analytic function
on C, see [3, 4]) tells us that these windows are
dense.

3The inverse is defined as
f
−1(E) = {x ∈ X | f(x) ∈ E}. (5.1)

4This means that f−1(E) ∈ Σ for all E ∈ Σ.
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Theorem 5.1. There exists an open dense subset
of values of a ∈ [0, 4] for which fa has a periodic
orbit attracting λ almost all x ∈ [0, 1].

• Theorem 5.1 tells us that chaos in the logistic
family is not ‘robust’.

• It is tempting to infer from Theorem 5.1 and the
fact that every periodic window covers a subset
of [0, 4] with non-zero Lebesgue measure, that if
we were to choose a ∈ [0, 4] randomly, then the
probability that fa is chaotic is zero. But this is
not the case:

Theorem 5.2 (Jakobson [5]). The Lebesgue mea-
sure of the set of a ∈ [0, 4] for which fa has a posi-
tive Lyapunov exponent is positive.

6 An introduction to ergodic theory

• This section mostly follows [6], see also [7, 8, 9,
10].

• Invariant measures define a distribution in space.
However, we are often more interested in the
distribution of the points of an orbit {fn(x)},
which is a distribution in time. Ergodic theory
connects spatial and temporal distributions and
shows that, rather remarkably, they are often the
same. In this section we also introduce SRB mea-
sures which provide a rigorous foundation for de-
scribing chaotic attractors.

• Throughout this section X denotes a compact
metric space and Σ is the collection of Borel sub-
sets of X . We let C(X ) denote the set of all con-
tinuous functions ϕ : X → R and M(X ) denote
the set of all probability measures on X .

Exercise 6.1. Show that M(X ) is a convex set.

Lemma 6.1. For any µ ∈ M(X ), define a func-
tional5 J : C(X ) → R by

J(ϕ) =

∫

X
ϕdµ. (6.1)

Then J is continuous, linear6, positive7 and nor-
malised8.

Theorem 6.2 (Riesz representation theorem). Let
J : C(X ) → R be continuous, linear, positive and
normalised. Then there exists unique µ ∈ M(X )
such that J(ϕ) =

∫

X ϕdµ for all ϕ ∈ C(X ).

• We conclude from Lemma 6.1 and the Riesz
representation theorem that there is a one-to-
one correspondence between probability mea-
sures µ ∈M(X ) and continuous, linear, positive,
normalised J : C(X ) → R.

• Let f : X → X be continuous. Let Ω ∈ Σ be
such that f(Ω) ⊂ Ω and f(X \Ω) ⊂ X \Ω. Then
for any x ∈ Ω, the forward orbit of x and any
backwards orbit of x must be contained in Ω.
Similarly for any x ∈ X \ Ω, the forward orbit
of x and any backwards orbit of x must be con-
tained in X \Ω. In this way Ω and X \Ω partition
X into two sets that do not interact under f .

Exercise 6.2. Consider the map on X = [0, 1]
given by

f(x) = 1
2 + 3

2

(

x− 1
2

)

− 2
(

x− 1
2

)3
. (6.2)

Show that [0, 1] can be partitioned in the sense dis-
cussed above for the sets Ω1 =

[

0, 12
)

, Ω2 = {0}
and Ω3 =

{

1
2

}

.

Exercise 6.3. Show that f(Ω) ⊂ Ω and f(X \Ω) ⊂
X \ Ω if and only if f−1(Ω) = Ω.

Definition 6.1. Let f : X → X be continuous.
Suppose µ ∈M(X ) is invariant under f . Then µ is
ergodic if µ(Ω) ∈ {0, 1} for every Ω ∈ Σ for which
f−1(Ω) = Ω.

• Given a continuous function f : X → X , we let
M(X , f) denote the set of all µ ∈M(X ) that are
invariant under f and E(X , f) denote the set of
all ergodic µ ∈M(X , f).

• Ergodic measures are those that cannot be de-
composed: µ ∈M(X , f) is ergodic if and only if
there do not exist ν1, ν2 ∈M(X , f) and a ∈ (0, 1)
such that µ = (1− a)ν1 + aν2

9.

5A functional is a function of functions!
6Meaning J(aϕ+ bψ) = aJ(ϕ) + bJ(ψ) for all ϕ,ψ ∈ C(X ) and all a, b ∈ R.
7Meaning J(ϕ) ≥ 0 whenever ϕ ≥ 0.
8Meaning J(1) = 1.
9This can be visualised by treating M(X ) as a metric space (not done here as it is relatively technical: one can first treat

M(X ) as a topological space by using the weak* topology and then constructing a metric from this). Then M(X , f) is a
non-empty, compact, convex subset of M(X ), and E(X , f) is the boundary of M(X , f).
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• The next result shows that any µ ∈M(X , f) can
be decomposed into ergodic measures.

Theorem 6.3 (Ergodic decomposition). For all
µ ∈ M(X , f), there exists a unique measure τ on
M(X , f) with τ(E(X , f)) = 1 such that

∫

X
ϕdµ =

∫

E(X ,f)

∫

X
ϕdσ dτ(σ), (6.3)

for all ϕ ∈ C(X ).

• Let µ ∈ M(X , f) and ϕ ∈ C(X ). Then
∫

X ϕdµ is the ‘space average’ of ϕ with respect
to µ. In contrast, for any x ∈ X , the quantity
limn→∞

1
n

∑n−1
i=0 ϕ

(

f i(x)
)

is the ‘time average’ of
ϕ under iteration by f .

Theorem 6.4 (Birkhoff’s ergodic theorem). For
any µ ∈ E(X , f) and µ almost all x ∈ X , we have

lim
n→∞

1

n

n−1
∑

i=0

ϕ
(

f i(x)
)

=

∫

X
ϕdµ, (6.4)

for all ϕ ∈ C(X ).

Example 6.1. Consider again f(x) = 4x(1 − x).
Here we will use Birkhoff’s ergodic theorem to show
that the Lyapunov exponent χ(x) of λ almost all
x ∈ [0, 1] is ln(2) (the calculation can also be
achieved in a less computationally intensive way
by converting to the tent map).

Lyapunov exponents for N -dimensional maps
were defined in Part VII. In one-dimension there is
only one Lyapunov exponent:

χ(x) = lim
n→∞

1

n
ln
(∣

∣(fn)′(x)
∣

∣

)

= lim
n→∞

1

n
ln

(

n−1
∏

i=0

∣

∣f ′
(

f i(x)
)
∣

∣

)

, (6.5)

where the primes denote differentiation with re-
spect to x. Equation (6.5) can be rewritten as

χ(x) = lim
n→∞

1

n

n−1
∑

i=0

ϕ
(

f i(x)
)

, (6.6)

where ϕ(y) = ln|f ′(y)|. Let g(x) = 1

π
√

x(1−x)
be

the invariant density of Exercise 5.3. It is straight-
forward to see that the corresponding measure, call
it µ, is ergodic. Also here λ almost all x ∈ [0, 1] is
the same as µ almost all x ∈ [0, 1]. Thus we can
apply Birkhoff’s ergodic theorem to say that for λ
almost all x ∈ [0, 1],

χ(x) =

∫

[0,1]
ϕdµ

=

∫ 1

0
ϕ(y)g(y) dy

=
2

π

∫ 1
2

0

ln(4− 8y)
√

y(1− y)
dy.

Under the integral substitution z = sin−1(1 − 2y)
this becomes

χ(x) =
2

π

∫ π
2

0
ln(4 sin(z)) dz.

This can be rewritten as χ(x) = 2 ln(2) + I, where

I = 2
π

∫

π
2
0 ln(sin(z)) dz. With a little algebraic wiz-

ardry10 one can show that I = − ln(2) and thus the
Lyapunov exponent is χ(x) = ln(2).

Definition 6.2. The basin of µ ∈ M(X , f), de-
noted B(µ), is the set of all x ∈ X for which (6.4)
holds for all ϕ ∈ C(X ).

Definition 6.3. A measure µ ∈ M(X , f) on a
measure space (X ,Σ, ν) is said to be physical if
ν(B(µ)) > 0.

• Often a map has more than one ergodic mea-
sure (in fact possibly uncountably many [11]).
Ergodic physical measures are the ones that we
will ‘see’ in practice and are analogous to Milnor
attractors.

• The next definition follows that given in [12].

10The integral I is the same as 2
π

∫ π

2

0
ln(cos(z)) dz, thus we can write I = 1

π

∫ π

2

0
(ln(sin(z)) + ln(cos(z))) dz. We have

ln(sin(z)) + ln(cos(z)) = ln(sin(z) cos(z)) = ln

(

1

2
sin(2z)

)

= ln(sin(2z))− ln(2),

and thus

I =
1

π

∫ π

2

0

ln(sin(2z) dz −
1

2
ln(2) =

1

2π

∫ π

0

ln(sin(z) dz −
1

2
ln(2) =

1

2
I −

1

2
ln(2).

By solving for I we obtain I = − ln(2).

8



Definition 6.4. A measure µ ∈ M(X , f) is called
an SRB (Sinai-Ruelle-Bowen) measure if it has a
positive Lyapunov exponent (almost everywhere)
and has absolutely continuous conditional measures
on its unstable manifolds.

• If x∗ is an asymptotically stable fixed point of
f , then the corresponding Dirac measure δx∗ is
physical. However δx∗ is not absolutely continu-
ous and therefore not an SRB measure.

Theorem 6.5. Every ergodic SRB measure with
no zero Lyapunov exponent is physical.

Definition 6.5. A measure µ ∈M(X , f) is said to
be mixing if

µ
(

Ω ∩ f−n(Ψ)
)

→ µ(Ω)µ(Ψ) as n→ ∞, (6.7)

for all Ω,Ψ ∈ Σ.

• Roughly speaking,
µ(Ω∩f−n(Ψ))

µ(Ω) is the fraction of
points in Ω that map to Ψ under fn, assuming
µ(Ω) 6= 0. The measure µ is mixing if this frac-
tion converges to the fraction of points in X that
belong to Ψ.

Lemma 6.6. If µ ∈ M(X , f) is mixing then it is
ergodic.

Proof. Choose any Ω ∈ Σ for which f−1(Ω) = Ω.
Then for any n ≥ 1,

(X \ Ω) ∩ f−n(Ω) = (X \ Ω) ∩ Ω = ∅ .

Thus if µ is mixing then µ(X \ Ω)µ(Ω) = 0. Thus
either µ(X \ Ω) = 0 or µ(Ω) = 0, hence µ is er-
godic.

Theorem 6.7. Every ergodic SRB measure with
no zero Lyapunov exponent is mixing.

Definition 6.6. Let ϕ ∈ C(X ) and x be a ran-
dom variable distributed according to some µ ∈
M(X , f). The mean and variance of ϕ(x) are

E[ϕ(x)] =

∫

X
ϕdµ , (6.8)

Var(ϕ(x)) = E[ϕ2(x)]− E[ϕ(x)]2 . (6.9)

Exercise 6.4. Consider ϕ(x) =
√
x for X = [0, 1].

i) Show that E[ϕ(x)] = 2
3 and Var(ϕ(x)) = 1

18
for the Lebesgue measure λ.

ii) Show that E[ϕ(x)] = 2
π
and Var(ϕ(x)) = π2−8

2π2

for the measure with density g(x) = 1

π
√

x(1−x)
.

• If x,y ∈ X are statistically independent random
variables distributed according to µ ∈ M(X , f),
then

E[ϕ(x)ϕ(y)] = E[ϕ(x)]2. (6.10)

This helps motivate the following definition.

Definition 6.7. Let ϕ ∈ C(X ) and x be a ran-
dom variable distributed according to some µ ∈
M(X , f). The autocorrelations of ϕ(x) are

R(n) =
E[ϕ(x)ϕ(fn(x))]− E[ϕ(x)]2

Var(ϕ(x))
, (6.11)

where n ≥ 0.

• Notice R(0) = 1. Also, if µ is mixing then
R(n) → 0 as n→ ∞.

Exercise 6.5. Let ϕ ∈ C(X ) and x be a random
variable distributed according to µ ∈ M(X , f).
Suppose µ is mixing. Let

Dn =
√
n

(

1

n

n−1
∑

i=0

ϕ
(

f i(x)
)

− E[ϕ(x)]

)

, (6.12)

for all n ≥ 0. Notice that 1√
n
Dn → 0 as n → ∞

by Birkhoff’s ergodic theorem. Here we determine
the basic statistical properties of Dn in order un-
derstand the rate at which 1√

n
Dn → 011.

i) By directly expanding terms, show that

E
[

D2
n

]

= Var(ϕ(x))

(

R(0) +
2

n

n−1
∑

i=1

(n− i)R(i)

)

.

ii) Let ξ2 = R(0) + 2
∑∞

i=1R(i), assuming that
this series converges. Show that

E
[

D2
n

]

→ Var(ϕ(x))ξ2,

as n→ ∞.

iii) Use the central limit theorem to argue thatDn

converges in distribution to a normal distribu-
tion with mean 0 and variance Var(ϕ(x))ξ2.

11See also http://www.scholarpedia.org/article/Decay of correlations.
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