Piecewise-linear maps: where do they come from and what do they do?

David Simpson

School of Mathematical and Computational Sciences

Massey University
Palmerston North
New Zealand

July, 2023

- Difference equations (maps) that are
 - piecewise-linear
 - with two pieces
 - continuous

- Difference equations (maps) that are
 - piecewise-linear
 - with two pieces
 - continuous
- E.g. the Lozi family:

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mapsto \begin{bmatrix} -a|x_1| + x_2 + 1 \\ bx_1 \end{bmatrix}$$

- Difference equations (maps) that are
 - piecewise-linear
 - with two pieces

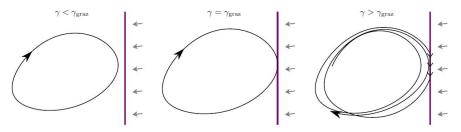
• E.g. the Lozi family:

 $\begin{vmatrix} x_1 \\ x_2 \end{vmatrix} \mapsto \begin{vmatrix} -a|x_1| + x_2 + 1 \\ bx_1 \end{vmatrix}$

 $= \begin{cases} \begin{bmatrix} a & 1 \\ b & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix}, & x_1 \le 0 \\ \begin{bmatrix} -a & 1 \\ b & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix}, & x_1 \ge 0 \end{cases}$

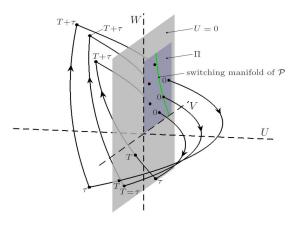
Piecewise-smooth maps as Poincaré maps

1) Grazing-sliding bifurcations



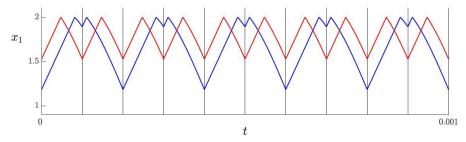
- ▶ Get a zero eigenvalue in one piece of the map due to the sliding motion
 - di Bernardo, Kowalczyk & Nordmark, 2002

2) Event collisions for ODEs with time-delayed switching



- Seiber, 2006

3) Corner collisions



- ▶ Often get a non-invertible map due to the switching
 - di Bernardo, Budd & Champneys, 2001

 Consider a continuous piecewise-smooth map

$$x \mapsto \begin{cases} f_L(x;\mu), & h(x) \le 0, \\ f_R(x;\mu), & h(x) \ge 0, \end{cases}$$

where $\mu \in \mathbb{R}$ is a parameter.

 Consider a continuous piecewise-smooth map

$$x \mapsto \begin{cases} f_L(x; \mu), & h(x) \le 0, \\ f_R(x; \mu), & h(x) \ge 0, \end{cases}$$

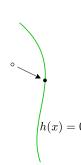
where $\mu \in \mathbb{R}$ is a parameter.

• Consider a continuous piecewise-smooth map

$$x \mapsto \begin{cases} f_L(x; \mu), & h(x) \le 0, \\ f_R(x; \mu), & h(x) \ge 0, \end{cases}$$

where $\mu \in \mathbb{R}$ is a parameter.

• As μ is varied a border-collision bifurcation occurs when a fixed point collides with the switching manifold.



• Consider a continuous piecewise-smooth map

$$x \mapsto \begin{cases} f_L(x; \mu), & h(x) \le 0, \\ f_R(x; \mu), & h(x) \ge 0, \end{cases}$$

where $\mu \in \mathbb{R}$ is a parameter.

- As μ is varied a border-collision bifurcation occurs when a fixed point collides with the switching manifold.
- Locally can approximate as

$$x \mapsto \begin{cases} A_L x + b\mu, & x_1 \le 0, \\ A_R x + b\mu, & x_1 \ge 0, \end{cases}$$

where A_L and A_R differ only in their first columns.

• Consider a continuous piecewise-smooth map

$$x \mapsto \begin{cases} f_L(x; \mu), & h(x) \le 0, \\ f_R(x; \mu), & h(x) \ge 0, \end{cases}$$

where $\mu \in \mathbb{R}$ is a parameter.

- As μ is varied a border-collision bifurcation occurs when a fixed point collides with the switching manifold.
- Locally can approximate as

$$x \mapsto \begin{cases} A_L x + b\mu, & x_1 \le 0, \\ A_R x + b\mu, & x_1 \ge 0, \end{cases}$$

where A_L and A_R differ only in their first columns.

• By scaling it suffices to consider $\mu = -1, 0, 1$.

• Consider a continuous piecewise-smooth map

$$x \mapsto \begin{cases} f_L(x; \mu), & h(x) \le 0, \\ f_R(x; \mu), & h(x) \ge 0, \end{cases}$$

where $\mu \in \mathbb{R}$ is a parameter.

- As μ is varied a border-collision bifurcation occurs when a fixed point collides with the switching manifold.
- Locally can approximate as

$$x \mapsto \begin{cases} A_L x + b\mu, & x_1 \le 0, \\ A_R x + b\mu, & x_1 \ge 0, \end{cases}$$

where A_L and A_R differ only in their first columns.

- By scaling it suffices to consider $\mu = -1, 0, 1$.
- Often the truncation to piecewise-linear is justified.

MANY DIFFERENT DYNAMICAL TRANSITIONS

Physica D 57 (1992) 39-57 North-Holland

Border-collision bifurcations including "period two to period three" for piecewise smooth systems*

Helena E. Nussea,b and James A. Yorkea,c

*Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
*Vakgroep Econometrie, F.E.W., Rijksuniversiteit Groningen, Postbus 800, 9700 AV Groningen, The Netherlands
*Department of Mathematics, University of Maryland, College Park, MD 20742, USA

The Border-Collision normal form

• If (A_L, e_1) is observable, equivalently if A_L has no eigenvector v with $v_1 = 0$, then

$$x \mapsto \begin{cases} A_L x + b\mu, & x_1 \le 0, \\ A_R x + b\mu, & x_1 \ge 0, \end{cases}$$

can be transformed to

$$x \mapsto \begin{cases} C_L x + e_1 \mu, & x_1 \le 0, \\ C_R x + e_1 \mu, & x_1 \ge 0, \end{cases}$$

with companion matrices:

$$C_{L} = \begin{bmatrix} p_{1} & 1 & & & \\ p_{2} & & \ddots & & \\ \vdots & & & 1 \end{bmatrix}, \qquad C_{R} = \begin{bmatrix} q_{1} & 1 & & & \\ q_{2} & & \ddots & & \\ \vdots & & & 1 \end{bmatrix}, \qquad e_{1} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

The Border-Collision normal form

In two dimensions

$$x \mapsto \begin{cases} \begin{bmatrix} \tau_L & 1 \\ -\delta_L & 0 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \mu, & x_1 \le 0, \\ \begin{bmatrix} \tau_R & 1 \\ -\delta_R & 0 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \mu, & x_1 \ge 0. \end{cases}$$

The Border-Collision normal form

• In two dimensions

$$x \mapsto \begin{cases} \begin{bmatrix} \tau_L & 1 \\ -\delta_L & 0 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \mu, & x_1 \le 0, \\ \begin{bmatrix} \tau_R & 1 \\ -\delta_R & 0 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \mu, & x_1 \ge 0. \end{cases}$$

• If $\tau_L = -\tau_R = a$, $\delta_L = \delta_R = -b$, and $\mu = 1$, get the Lozi family

$$x \mapsto \begin{cases} \begin{bmatrix} a & 1 \\ b & 0 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix}, & x_1 \le 0, \\ \begin{bmatrix} -a & 1 \\ b & 0 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix}, & x_1 \ge 0. \end{cases}$$

OUTLINE

- 1) A sausage-string structure for periodicity regions.
- 2) Homoclinic corners and infinitely many attractors.
- 3) Stability of boundary fixed points.

OUTLINE

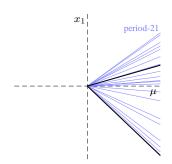
- 1) A sausage-string structure for periodicity regions.
- $2)\,$ Homoclinic corners and infinitely many attractors.
- 3) Stability of boundary fixed points.

$$x \mapsto \begin{cases} A_L x + b\mu, & x_1 \le 0, \\ A_R x + b\mu, & x_1 \ge 0. \end{cases}$$

$$A_L = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0.15 & 0 & 0 \end{bmatrix}, \quad A_R = \begin{bmatrix} -1.5 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & 0 & 0 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$x \mapsto \begin{cases} A_L x + b\mu, & x_1 \le 0, \\ A_R x + b\mu, & x_1 \ge 0. \end{cases}$$

$$A_L = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0.15 & 0 & 0 \end{bmatrix}, \quad A_R = \begin{bmatrix} -1.5 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & 0 & 0 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$



$$x\mapsto \begin{cases} A_Lx+b\mu, & x_1\leq 0,\\ A_Rx+b\mu, & x_1\geq 0. \end{cases}$$

$$A_L=\begin{bmatrix} 0 & 1 & 0\\ 1 & 0 & 1\\ 0.15 & 0 & 0 \end{bmatrix}, \quad A_R=\begin{bmatrix} \tau_R & 1 & 0\\ 0 & 0 & 1\\ 2 & 0 & 0 \end{bmatrix}, \quad b=\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$$
 period-21
$$\delta_L$$

$$\delta$$

$$x\mapsto \begin{cases} A_Lx+b\mu, & x_1\leq 0,\\ A_Rx+b\mu, & x_1\geq 0. \end{cases}$$

$$A_L=\begin{bmatrix} 0 & 1 & 0\\ 1 & 0 & 1\\ 0 & 15 & 0 & 0 \end{bmatrix}, \quad A_R=\begin{bmatrix} \tau_R & 1 & 0\\ 0 & 0 & 1\\ 2 & 0 & 0 \end{bmatrix}, \quad b=\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$$
 period-21
$$\delta_L$$

$$\delta_L$$

$$x\mapsto \begin{cases} A_Lx+b\mu, & x_1\leq 0,\\ A_Rx+b\mu, & x_1\geq 0. \end{cases}$$

$$A_L=\begin{bmatrix} 0 & 1 & 0\\ 1 & 0 & 1\\ 0.15 & 0 & 0 \end{bmatrix}, \quad A_R=\begin{bmatrix} \tau_R & 1 & 0\\ 0 & 0 & 1\\ 2 & 0 & 0 \end{bmatrix}, \quad b=\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x_1 & 0\\ 0 & 0 & 1\\ 2 & 0 & 0 \end{bmatrix}, \quad b=\begin{bmatrix} 1\\ 0\\ 0 & 0 & 1\\ 0 & 0 & 1 \end{bmatrix}$$
 shrinking points
$$\begin{bmatrix} x_1 & 0\\ 0 & 0 & 1\\ 0 & 0 & 1 \end{bmatrix}$$
 shrinking points
$$\begin{bmatrix} x_1 & 0\\ 0 & 0 & 1\\ 0 & 0 & 1 \end{bmatrix}$$

$$x\mapsto \begin{cases} A_Lx+b\mu, & x_1\leq 0,\\ A_Rx+b\mu, & x_1\geq 0. \end{cases}$$

$$A_L=\begin{bmatrix} 0 & 1 & 0\\ 1 & 0 & 1\\ 0.45 & 0 & 0 \end{bmatrix}, \quad A_R=\begin{bmatrix} \tau_R & 1 & 0\\ 0 & 0 & 1\\ 2 & 0 & 0 \end{bmatrix}, \quad b=\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$$
 period-21
$$\delta_L$$

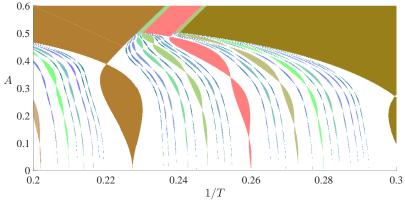
$$\delta$$

INTEGRATE-AND-FIRE NEURONS

potential: $\dot{V} = -V + I - F(t)$ (I = 1.5)

reset law: $V(t) = 1 \rightarrow V(t) = 0$

square-wave forcing: $F(t) = A \operatorname{sgn}\left[\sin\left(\frac{2\pi t}{T}\right)\right]$

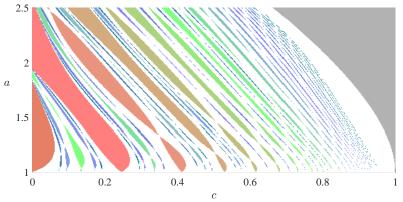


- Tiesinga, 2002

Business cycle dynamics

income: $Y_t = cY_{t-1} + I_t$

net investment: $I_t = \max[a(Y_{t-1} - Y_{t-2}), -arY_{t-2}]$



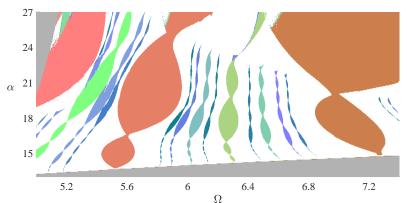
- Sushko, Gardini & Puu, 2004

DC/DC POWER CONVERTERS

$$\dot{y}_k = \lambda_k (y_k - K_F(t)), \quad k = 1, 2$$

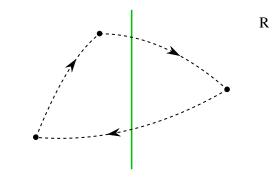
$$K_F(t) = \mathbf{1}_{\xi > \frac{q}{\alpha\Omega}(t - \lfloor t \rfloor)}$$

$$\xi = y_1(\lfloor t \rfloor) - \theta y_2(\lfloor t \rfloor) + \frac{q}{2\Omega}$$

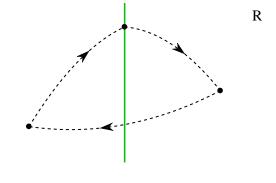


- Zhusubaliyev & Mosekilde, 2008

 \bullet An LLR-cycle:



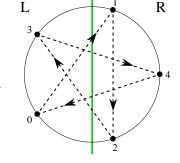
• The left and right boundaries of the periodicity regions are border-collision bifurcations where one point of an S-cycle lies on the switching manifold.

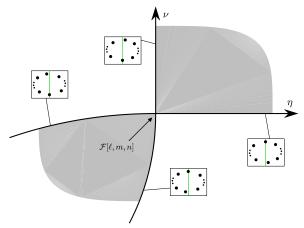


• Shrinking points are where an S-cycle has two points on the switching manifold, where $S = \mathcal{F}[\ell, m, n]$ corresponds to rigid rotation on a circle:

$$n$$
 – period $\frac{m}{n}$ – rotation number ℓ – number of L's

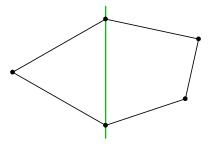
• For example, $\mathcal{F}[2,2,5] = LRRLR$



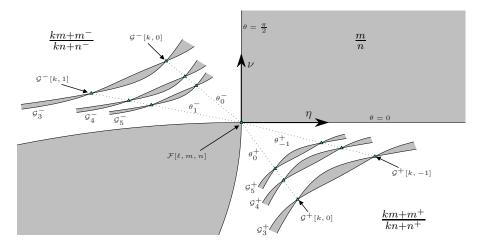


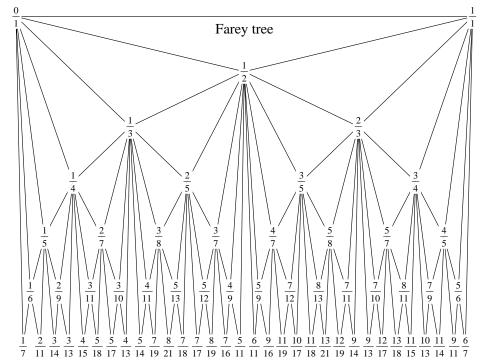
- Four distinct curves of border-collision bifurcations.
- These admit a nice combinatorical characterisation in terms of ℓ , m, and n.
 - S & Meiss, Nonlinearity, 2009 & 2010

• At a shrinking point there exists an invariant polygon.

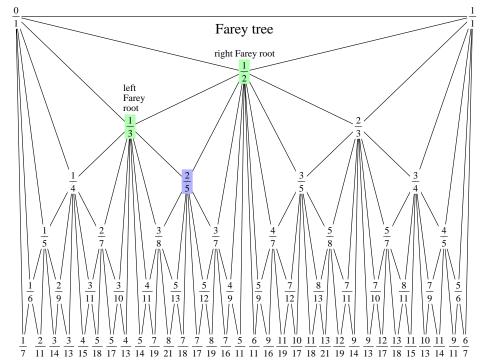


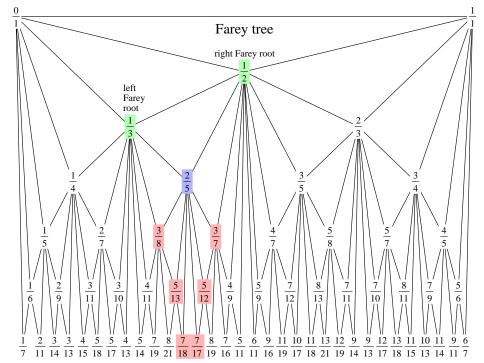
 Near the shrinking point this persists as a one-dimensional slow manifold. • Near a shrinking point there are two primary sequences of periodicity regions.



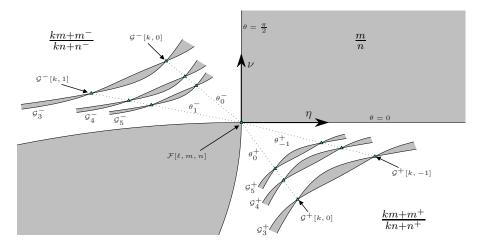








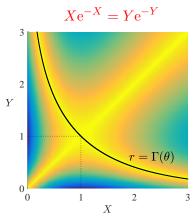
• Near a shrinking point there are two primary sequences of periodicity regions.



- Apply a certain linear coordinate scaling: $\eta \to X, \nu \to Y$
- Introduce polar coordinates: $X = r\cos(\theta), Y = r\sin(\theta)$

THEOREM (S, Nonlinearity, 2017)

Primary periodicity regions are within $\mathcal{O}(\frac{1}{k^2})$ of $r = \frac{1}{k}\Gamma(\theta)$, where $r = \Gamma(\theta)$ is the non-trivial solution to



THEOREM (S, Nonlinearity, 2017)

On primary periodicity regions, $\mathcal{G}^{\pm}[k, \Delta \ell]$ -shrinking points exist for large k if and only if $\kappa_{\Delta \ell}^{\pm} > 0$ and are located at $\theta = \theta_{\Delta \ell}^{\pm} + \mathcal{O}\left(\frac{1}{k}\right)$ where:

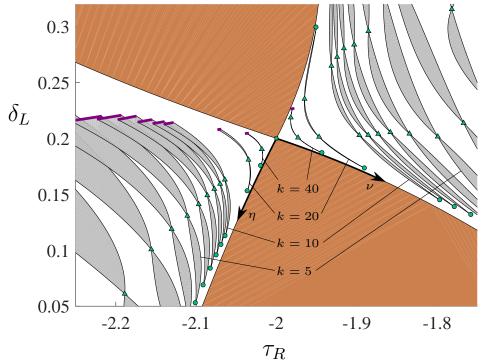
For $\Delta \ell > 0$,

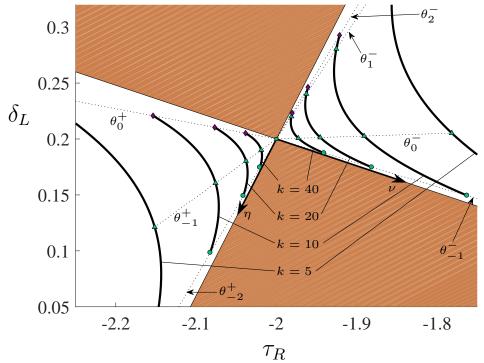
$$\kappa_{\Delta\ell}^{+} = u_0^{\mathsf{T}} M_{\mathcal{S}^{\ell d}}^{\Delta\ell} v_{-d}$$

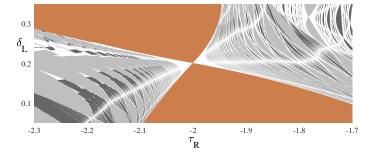
$$\theta_{\Delta\ell}^{+} = \tan^{-1} \left(\frac{t_d}{t_{-d} \left| \kappa_{\Delta\ell}^{+} \right|} \right)$$

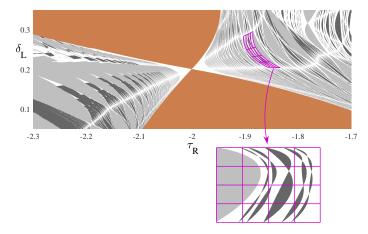
etc.

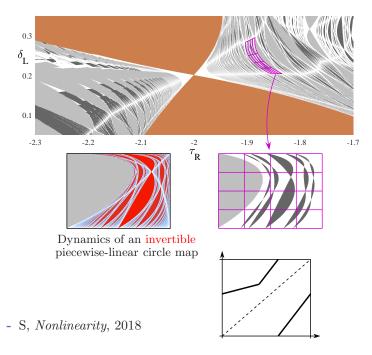


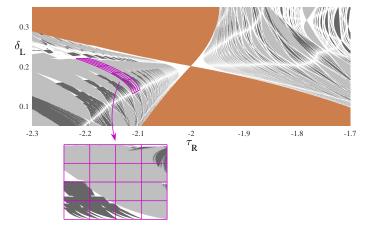


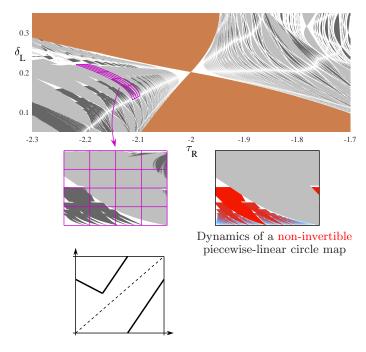












Non-rotational periodic solutions

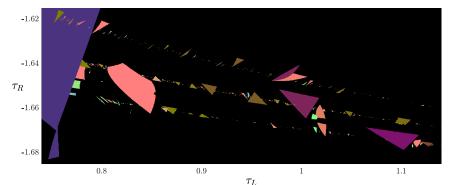
• E.g. with $\delta_L = 0.1, \, \delta_R = 1.2,$

$$x \mapsto \begin{cases} \begin{bmatrix} \tau_L & 1 \\ -\delta_L & 0 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \mu, & x_1 \le 0, \\ \begin{bmatrix} \tau_R & 1 \\ -\delta_R & 0 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \mu, & x_1 \ge 0. \end{cases}$$

Non-rotational periodic solutions

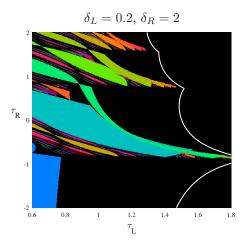
• E.g. with $\delta_L = 0.1, \, \delta_R = 1.2,$

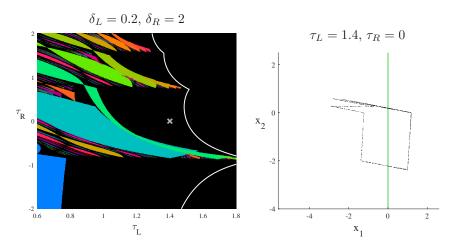
$$x \mapsto \begin{cases} \begin{bmatrix} \tau_L & 1 \\ -\delta_L & 0 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \mu, & x_1 \le 0, \\ \begin{bmatrix} \tau_R & 1 \\ -\delta_R & 0 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \mu, & x_1 \ge 0. \end{cases}$$

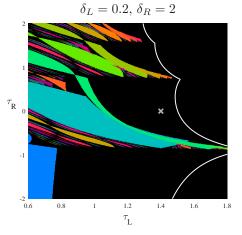


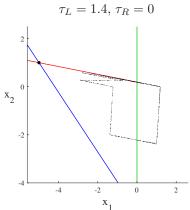
OUTLINE

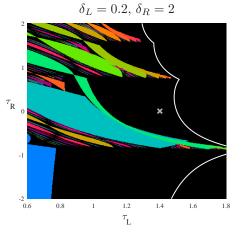
- 1) A sausage-string structure for periodicity regions.
- 2) Homoclinic corners and infinitely many attractors.
- 3) Stability of boundary fixed points.

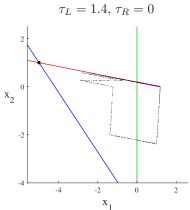


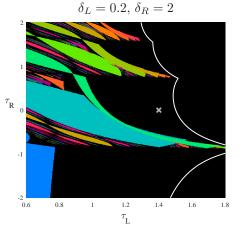


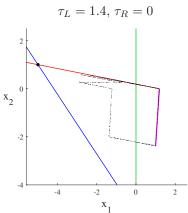


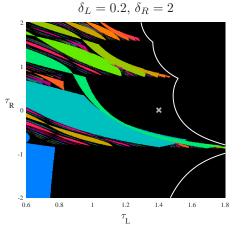


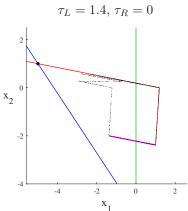


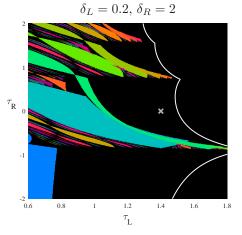


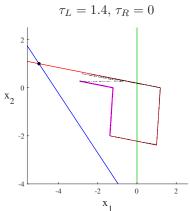


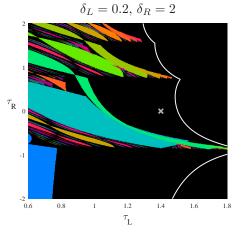


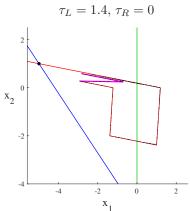


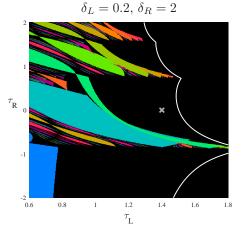




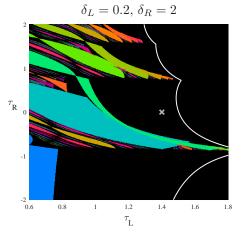


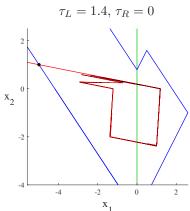


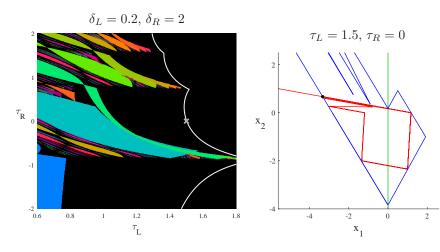


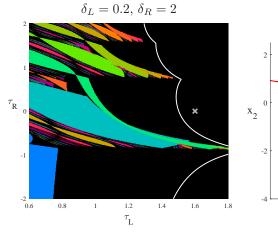


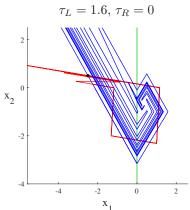


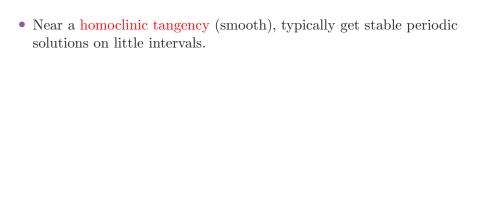




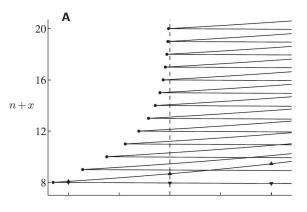




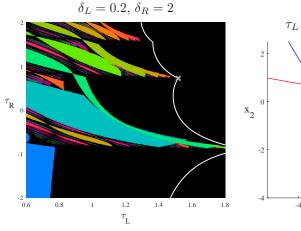


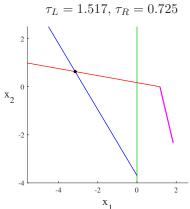


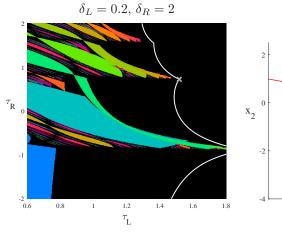
• Near a homoclinic corner (piecewise-smooth), typically get no stable periodic solutions.

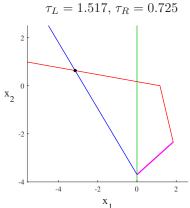


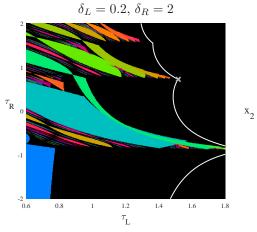
- S., Chaos, 2016

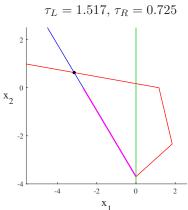


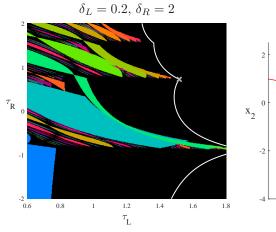


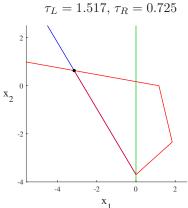


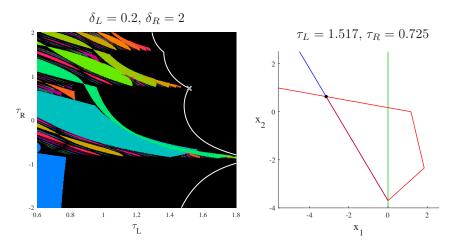




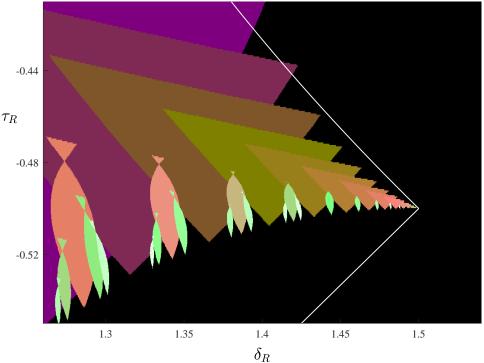


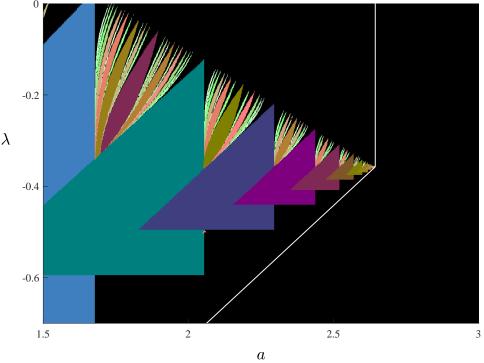






• Such subsumed homoclinic connections are codimension-two.

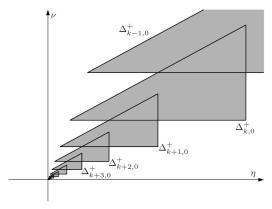




• If the eigenvalues associated with the saddle satisfy

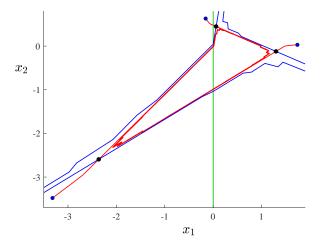
$$0 < \lambda < 1 < \sigma < \frac{1}{\lambda},$$

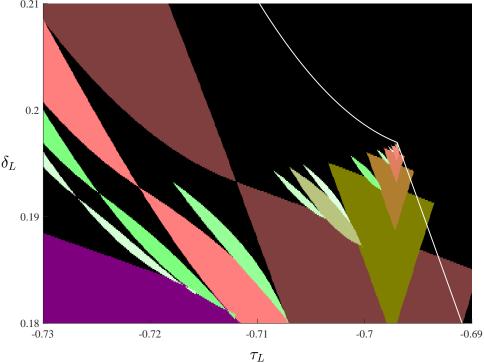
then stable periodic solutions exist in an infinite sequence of roughly triangular regions.



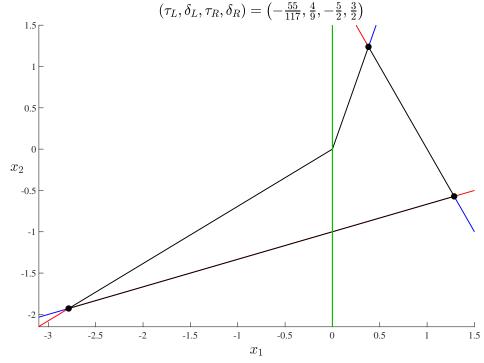
- S., IJBC, 2020

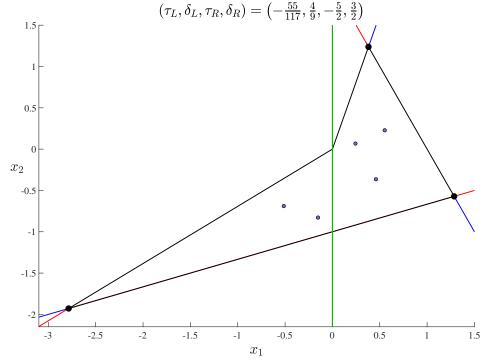
• The same behaviour occurs if the saddle is a periodic solution.

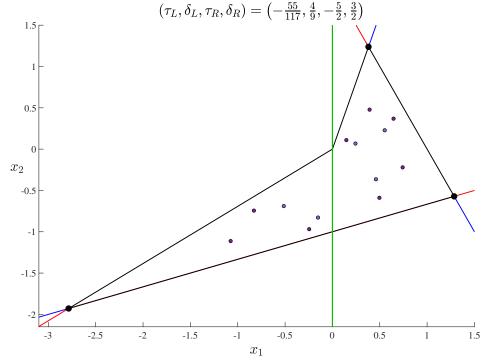


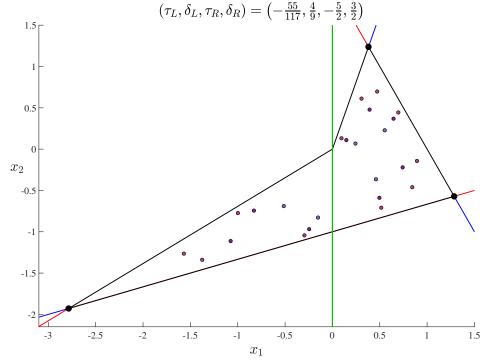


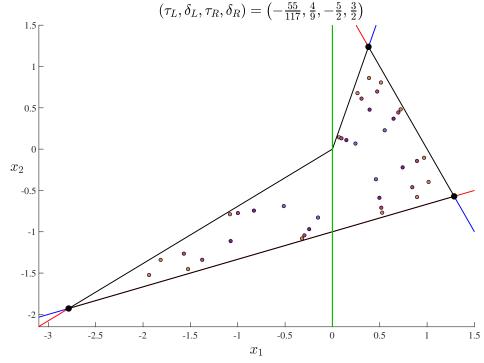
- A subsumed homoclinic connection with $\lambda \sigma = 1$ is codimension-three.
- Here there may exist infinitely many stable periodic solutions.

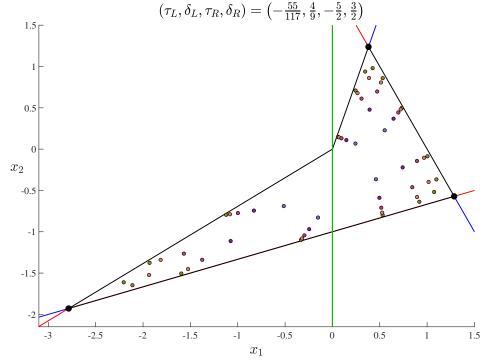


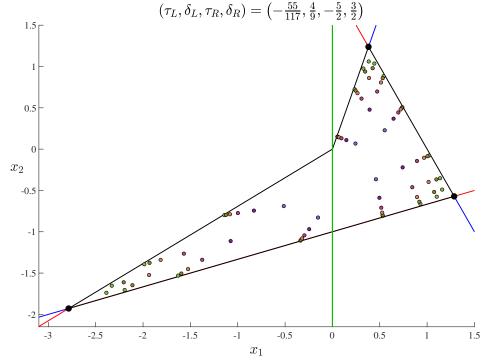


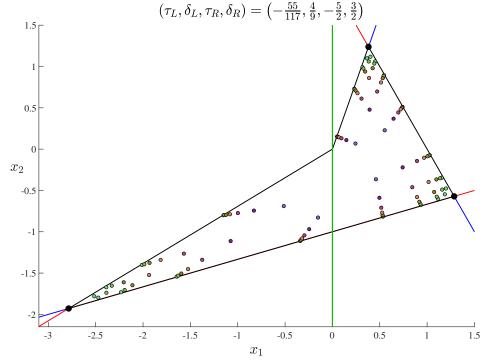


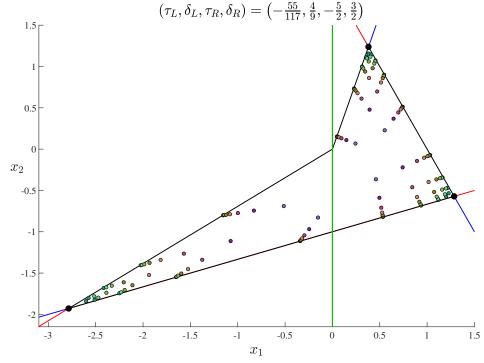


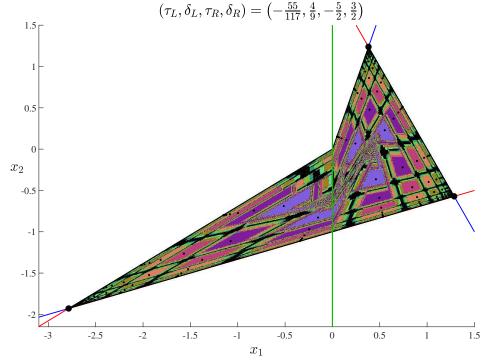












• Let $\mathcal{X} \in \{L, R\}^n$ and $\mathcal{Y} \in \{L, R\}^p$ with

$$\mathcal{X}\mathcal{Y} = (\mathcal{Y}\mathcal{X})^{\overline{0}\,\overline{\alpha}}$$

for some $\alpha \neq 0$.

Suppose

$$M_{\mathcal{X}} = A_{\mathcal{X}_{n-1}} \cdots A_{\mathcal{X}_0}$$

has multiplicity-one eigenvalues $0 < \lambda_2 < 1 < \lambda_1$ and all other eigenvalues have modulus less than λ_2 .

• For j = 1, 2, let ω_j^T and ζ_j be left and right eigenvectors of $M_{\mathcal{X}}$ corresponding to λ_j with $\omega_j^\mathsf{T} \zeta_j = 1$, and let

$$C = \begin{vmatrix} \omega_1^{\mathsf{I}} \\ \omega_2^{\mathsf{T}} \end{vmatrix} M_{\mathcal{Y}} \begin{bmatrix} \zeta_1 & \zeta_2 \end{bmatrix}.$$

• Suppose $e_1^\mathsf{T}\zeta_1 \neq 0$.

THEOREM (S & TUFFLEY, IJBC, 2017)

Suppose

- i) $\lambda_1 \lambda_2 = 1$ and $\lambda_2 < \det(C) < 1$,
- ii) the \mathcal{X} -cycle has no points on Σ (the switching manifold),
- iii) there exists an $\mathcal{X}^{\infty}\mathcal{Y}\mathcal{X}^{\infty}$ -orbit $\{p_i\}$ homoclinic to the \mathcal{X} -cycle and with $p_0 = E^u(X_0^{\mathcal{X}}) \cap \Sigma$ and $p_{\alpha} \in \Sigma$, and
- iv) there is no $i \geq 0$ for which $p_i \in \Sigma$ and $p_{i+n} \in \Sigma$.

Then there exists k_{\min} such that f has an attracting $\mathcal{X}^k\mathcal{Y}$ -cycle for all $k \geq k_{\min}$.

THEOREM (S & TUFFLEY, IJBC, 2017)

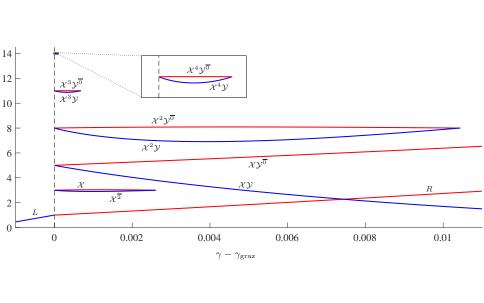
Suppose

- i) $\det(C) \notin \{-1, 0\},\$
- ii) $f_{\mathcal{Y}^{\overline{0}}}(E^u(X_0^{\mathcal{X}})) \not\subset E^s(X_0^{\mathcal{X}})$, and
- iii) there exists k_{\min} such that f has an attracting $\mathcal{X}^k \mathcal{Y}$ -cycle for all $k \geq k_{\min}$.

Then there exists an $\mathcal{X}^{\infty}\mathcal{Y}\mathcal{X}^{\infty}$ -orbit $\{p_i\}$ (possibly virtual) homoclinic to the \mathcal{X} -cycle and with $p_0 = E^u(X_0^{\mathcal{X}}) \cap \Sigma$ and $p_{\alpha} \in \Sigma$, and $\lambda_1 \lambda_2 = 1$.

OCCURRENCE IN AN ODE SYSTEM

$$\begin{bmatrix} \frac{du}{dt} \\ \frac{dv}{dt} \\ \frac{dw}{dt} \end{bmatrix} = \begin{cases} \begin{bmatrix} v \\ -\alpha_1(u+1) - \alpha_2 v - \alpha_3 w + \gamma \cos(t) \end{bmatrix}, & u < 0 \\ -\alpha_1(u+1) - \alpha_2 v - \alpha_3 w + \gamma \cos(t) \end{bmatrix}, & u > 0 \\ \begin{bmatrix} -1 \\ \beta_1 \\ \beta_2 \end{bmatrix}, & u > 0 \\ \alpha_1 \approx 0.0302445699 \\ \alpha_2 \approx 0.1667559781 \\ \alpha_3 \approx 0.4009520660 \\ \beta_1 \approx -0.3783802961 \\ \beta_2 \approx -0.5981255840 \end{cases}$$



OUTLINE

- 1) A sausage-string structure for periodicity regions.
- 2) Homoclinic corners and infinitely many attractors.
- 3) Stability of boundary fixed points.

• Set $\mu = 0$:

$$x \mapsto \begin{cases} A_L x, & x_1 \le 0, \\ A_R x, & x_1 \ge 0. \end{cases}$$
 (\bigstar)

• Set $\mu = 0$:

$$x \mapsto \begin{cases} A_L x, & x_1 \le 0, \\ A_R x, & x_1 \ge 0. \end{cases}$$

• The origin is a fixed point on the switching manifold.

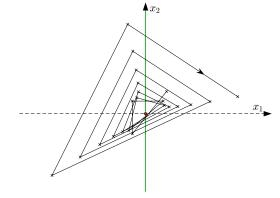
• Set $\mu = 0$:

$$x \mapsto \begin{cases} A_L x, & x_1 \le 0, \\ A_R x, & x_1 \ge 0. \end{cases}$$
 (\bigstar)

- The origin is a fixed point on the switching manifold.
- PROBLEM: for what A_L and A_R is it stable?

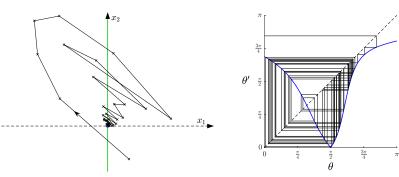
- If $n \geq 2$, even if all eigenvalues of A_L and A_R have modulus less than 1, 0 can be an unstable fixed point of (\bigstar) .
 - Hassouneh, Abed, and Nusse, Phys. Rev. Lett., 2004
 - Do and Baek, Commun. Pure Appl. Anal., 2006
 - Example:

 A_L has eigenvalues: $0.95 e^{\pm 1.8i}$ A_R has eigenvalues: $0.95 e^{\pm 2.6i}$



$$x \mapsto \begin{cases} A_L x, & x_1 \le 0, \\ A_R x, & x_1 \ge 0. \end{cases}$$
 (\bigstar)

• If $n \ge 2$ and the map is non-invertible, orbits can converge to ${\bf 0}$ in a chaotic fashion:



$$x \mapsto \begin{cases} A_L x, & x_1 \le 0, \\ A_R x, & x_1 \ge 0. \end{cases}$$
$$x \mapsto \begin{cases} A_L x + o(x), & x_1 \le 0, \end{cases}$$

 (\bigstar)

$$x \mapsto \begin{cases} A_L x + o(x), & x_1 \le 0, \\ A_R x + o(x), & x_1 \ge 0. \end{cases}$$
 $(\bigstar \bigstar)$

$$x \mapsto \begin{cases} A_L x, & x_1 \le 0, \\ A_R x, & x_1 \ge 0. \end{cases}$$

$$x \mapsto \begin{cases} A_L x + o(x), & x_1 \le 0, \\ A_R x + o(x), & x_1 \ge 0. \end{cases}$$

 (\bigstar)

THEOREM (S., J. Dyn. Diff. Eq., 2020) If **0** is asymptotically stable for (\bigstar)

then it is also asymptotically stable for (\bigstar) .

$$x \mapsto \begin{cases} A_L x, & x_1 \le 0, \\ A_R x, & x_1 \ge 0. \end{cases}$$

 (\bigstar)

$$x \mapsto \begin{cases} A_L x + o(x), & x_1 \le 0, \\ A_R x + o(x), & x_1 \ge 0. \end{cases}$$

If **0** is asymptotically stable for (\bigstar) then it is also asymptotically stable for $(\bigstar \bigstar)$.

Conjecture

If **0** is unstable for (\bigstar) then it is also unstable for $(\bigstar \bigstar)$.

- Stability can be determined computationally.
 - Gardini, Nonlin. Anal., 1992
 - Athanasopoulos and Lazar, IFAC Proceedings, 2014

- Stability can be determined computationally.
 - Gardini, Nonlin. Anal., 1992
 - Athanasopoulos and Lazar, IFAC Proceedings, 2014

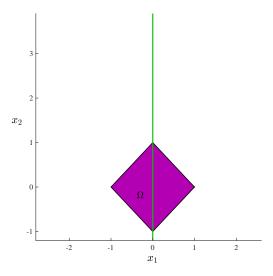
Theorem (S., NZJM, 2020)

Let f be a map of the form (\bigstar) . Let $\Omega \subset \mathbb{R}^n$ be compact with

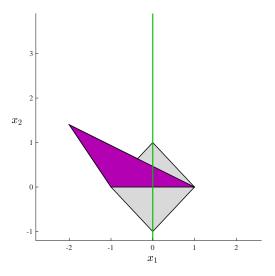
- $\mathbf{0} \in \operatorname{int}(\Omega)$. The following are equivalent. 1) **0** is an asymptotically stable fixed point of f.

 - 2) There exists $m \geq 1$ such that $f^m(\Omega) \subset \operatorname{int}(\Omega)$.
 - 3) There exists $p \ge 1$ such that $f^p(\Omega) \subset \operatorname{int}\left(\bigcup_{i=0}^{p-1} f^i(\Omega)\right)$.

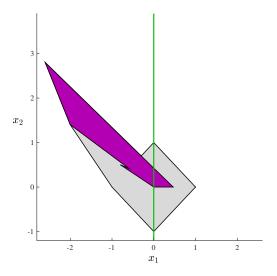
- Let Ω be a polytope. Then $f^i(\Omega)$ is a polytope for all $i \geq 0$ and each $\bigcup_{i=0}^{p-1} f^i(\Omega)$ can be encoded with finitely many data points.
 - ▶ Here stability is verified with p = 12:



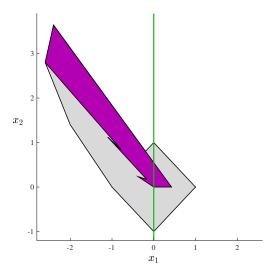
- Let Ω be a polytope. Then $f^i(\Omega)$ is a polytope for all $i \geq 0$ and each $\bigcup_{i=0}^{p-1} f^i(\Omega)$ can be encoded with finitely many data points.
 - ▶ Here stability is verified with p = 12:



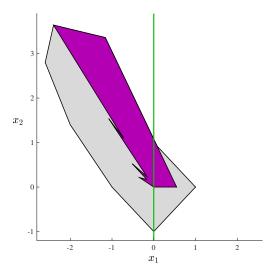
- Let Ω be a polytope. Then $f^i(\Omega)$ is a polytope for all $i \geq 0$ and each $\bigcup_{i=0}^{p-1} f^i(\Omega)$ can be encoded with finitely many data points.
 - ▶ Here stability is verified with p = 12:



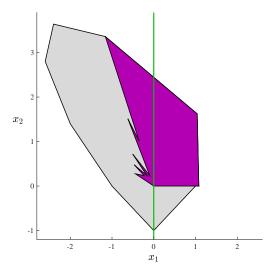
- Let Ω be a polytope. Then $f^i(\Omega)$ is a polytope for all $i \geq 0$ and each $\bigcup_{i=0}^{p-1} f^i(\Omega)$ can be encoded with finitely many data points.
 - ▶ Here stability is verified with p = 12:



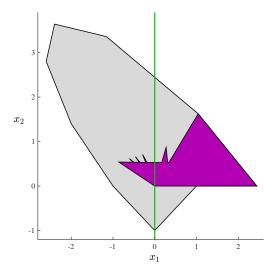
- Let Ω be a polytope. Then $f^i(\Omega)$ is a polytope for all $i \geq 0$ and each $\bigcup_{i=0}^{p-1} f^i(\Omega)$ can be encoded with finitely many data points.
 - ▶ Here stability is verified with p = 12:



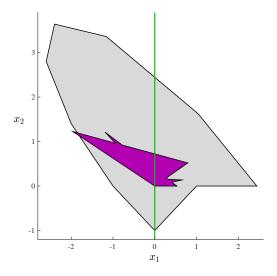
- Let Ω be a polytope. Then $f^i(\Omega)$ is a polytope for all $i \geq 0$ and each $\bigcup_{i=0}^{p-1} f^i(\Omega)$ can be encoded with finitely many data points.
 - ▶ Here stability is verified with p = 12:



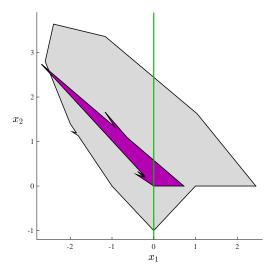
- Let Ω be a polytope. Then $f^i(\Omega)$ is a polytope for all $i \geq 0$ and each $\bigcup_{i=0}^{p-1} f^i(\Omega)$ can be encoded with finitely many data points.
 - ▶ Here stability is verified with p = 12:



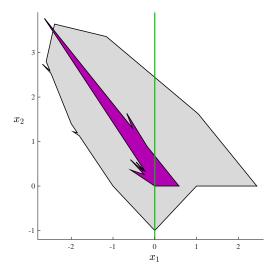
- Let Ω be a polytope. Then $f^i(\Omega)$ is a polytope for all $i \geq 0$ and each $\bigcup_{i=0}^{p-1} f^i(\Omega)$ can be encoded with finitely many data points.
 - ▶ Here stability is verified with p = 12:



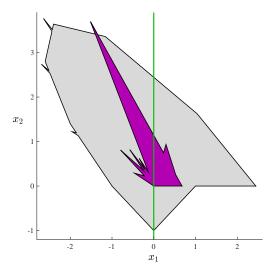
- Let Ω be a polytope. Then $f^i(\Omega)$ is a polytope for all $i \geq 0$ and each $\bigcup_{i=0}^{p-1} f^i(\Omega)$ can be encoded with finitely many data points.
 - ▶ Here stability is verified with p = 12:



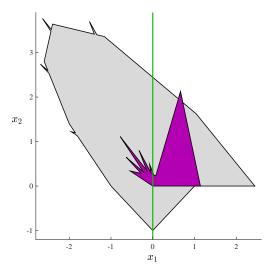
- Let Ω be a polytope. Then $f^i(\Omega)$ is a polytope for all $i \geq 0$ and each $\bigcup_{i=0}^{p-1} f^i(\Omega)$ can be encoded with finitely many data points.
 - ▶ Here stability is verified with p = 12:



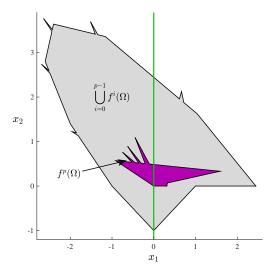
- Let Ω be a polytope. Then $f^i(\Omega)$ is a polytope for all $i \geq 0$ and each $\bigcup_{i=0}^{p-1} f^i(\Omega)$ can be encoded with finitely many data points.
 - ▶ Here stability is verified with p = 12:



- Let Ω be a polytope. Then $f^i(\Omega)$ is a polytope for all $i \geq 0$ and each $\bigcup_{i=0}^{p-1} f^i(\Omega)$ can be encoded with finitely many data points.
 - ▶ Here stability is verified with p = 12:

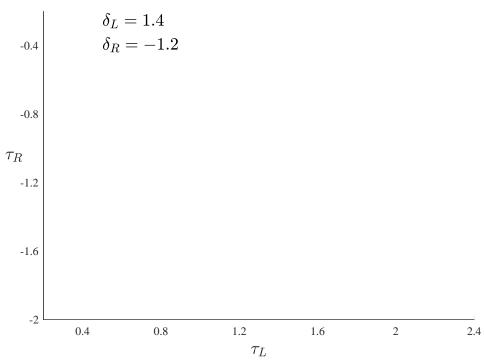


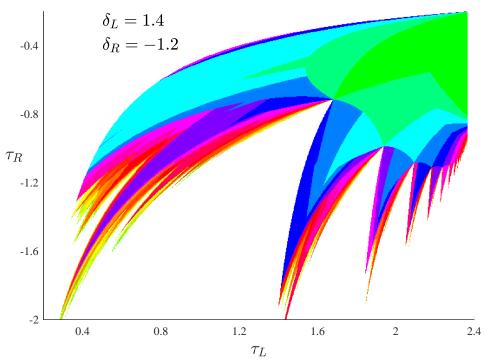
- Let Ω be a polytope. Then $f^i(\Omega)$ is a polytope for all $i \geq 0$ and each $\bigcup_{i=0}^{p-1} f^i(\Omega)$ can be encoded with finitely many data points.
 - ▶ Here stability is verified with p = 12:



• With n=2 the map has four parameters:

$$x \mapsto \begin{cases} \begin{bmatrix} \tau_L & 1 \\ -\delta_L & 0 \end{bmatrix} x, & x_1 \le 0, \\ \begin{bmatrix} \tau_R & 1 \\ -\delta_R & 0 \end{bmatrix} x, & x_1 \ge 0. \end{cases}$$

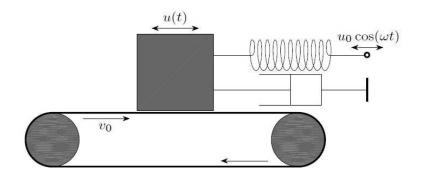




• If **0** is asymptotically stable with $\mu=0$, then there exists a local attractor with $\mu\neq0$.

STICK-SLIP FRICTION OSCILLATOR

$$\ddot{u} + 2\zeta_r \dot{u} + u = u_0 \cos(\omega t) - F_s \operatorname{sgn}(\dot{u} - v_0) - \kappa v_0$$



 \bullet Grazing-sliding bifurcations described by

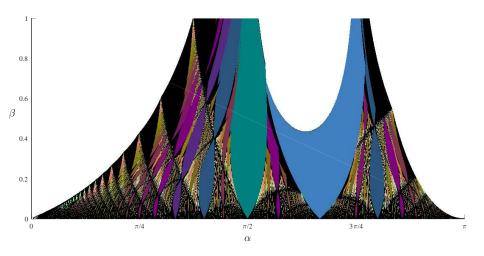
$$f(x,y) = \begin{cases} \begin{bmatrix} 2e^{\beta}\cos(\alpha) & 1\\ -e^{2\beta} & 0 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} + \begin{bmatrix} \mu\\ 0 \end{bmatrix}, & x \le 0, \\ e^{\beta}\cos(\alpha) & 1\\ 0 & 0 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} + \begin{bmatrix} \mu\\ 0 \end{bmatrix}, & x \ge 0, \end{cases}$$

where

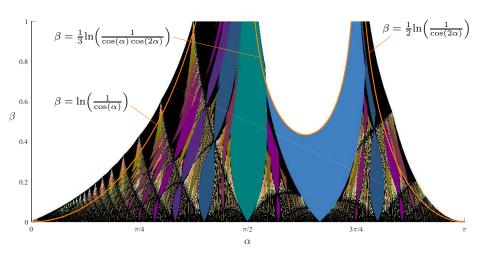
$$\alpha = \frac{2\pi\sqrt{1-\zeta_r^2}}{\zeta_r}, \qquad \beta = -\frac{2\pi\zeta_r}{\zeta_r}.$$

- Szalai and Osinga, *Chaos*, 2008.

Dynamics for $\mu < 0$



Dynamics for $\mu < 0$



SUMMARY

- Rotational periodicity regions have a sausage-string structure.
 - ▶ What structures do non-rotational periodicity regions have?
- Near a subsumed homoclinic connection get roughly triangular periodicity regions.
 - ▶ Between these how are other periodicity regions organised?
- Asymptotic stability of a fixed point on a switching manifold is robust to higher order terms.
 - ► What about instability?
- Computational methods exist for determining stability.
 - ▶ How to extend these to ODEs (e.g. Filippov systems)?