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• E.g. the Lozi family:

[

x1
x2

]

7→

[

−a|x1|+ x2 + 1
bx1

]

=























[

a 1

b 0

][

x1

x2

]

+

[

1

0

]

, x1 ≤ 0

[

−a 1

b 0

][

x1

x2

]

+

[

1

0

]

, x1 ≥ 0



Piecewise-smooth maps as Poincaré maps

1) Grazing-sliding bifurcations

◮ Get a zero eigenvalue in one piece of the map due to the sliding
motion

- di Bernardo, Kowalczyk & Nordmark, 2002



2) Event collisions for ODEs with time-delayed switching

- Seiber, 2006



3) Corner collisions

◮ Often get a non-invertible map due to the switching

- di Bernardo, Budd & Champneys, 2001
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Border-collision bifurcations

• Consider a continuous piecewise-smooth
map

x 7→

{

fL(x;µ), h(x) ≤ 0,

fR(x;µ), h(x) ≥ 0,

where µ ∈ R is a parameter.

• As µ is varied a border-collision
bifurcation occurs when a fixed point
collides with the switching manifold.

• Locally can approximate as

x 7→

{

ALx+ bµ, x1 ≤ 0,

ARx+ bµ, x1 ≥ 0,

where AL and AR differ only in their first columns.
• By scaling it suffices to consider µ = −1, 0, 1.
• Often the truncation to piecewise-linear is justified.



Many different dynamical transitions



The border-collision normal form
• If (AL, e1) is observable, equivalently if AL has no eigenvector v
with v1 = 0, then

x 7→
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The border-collision normal form
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• If τL = −τR = a, δL = δR = −b, and µ = 1, get the Lozi family
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Integrate-and-fire neurons

potential: V̇ = −V + I − F (t) (I = 1.5)

reset law: V (t) = 1 → V (t) = 0

square-wave forcing: F (t) = A sgn
[

sin
(

2πt
T

)]
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- Tiesinga, 2002



Business cycle dynamics

income: Yt = cYt−1 + It

net investment: It = max[a(Yt−1 − Yt−2),−arYt−2]

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

- Sushko, Gardini & Puu, 2004



DC/DC power converters

ẏk = λk(yk −KF (t)), k = 1, 2

KF (t) = 1ξ > q
αΩ

(t−⌊t⌋)

ξ = y1(⌊t⌋) − θy2(⌊t⌋) +
q
2Ω

5.2 5.6 6 6.4 6.8 7.2

15

18

21

24

27

- Zhusubaliyev & Mosekilde, 2008



• An LLR-cycle:

L R



• The left and right boundaries of the periodicity regions are
border-collision bifurcations where one point of an S-cycle lies on
the switching manifold.

L R



• Shrinking points are where an S-cycle has two points on the
switching manifold, where S = F [ℓ,m, n] corresponds to rigid
rotation on a circle:

n− period
m
n
− rotation number

ℓ− number of L’s

• For example, F [2, 2, 5] = LRRLR →
4

3

2

1

0

L R



• Four distinct curves of border-collision bifurcations.

• These admit a nice combinatorical characterisation in terms of
ℓ, m, and n.

- S & Meiss, Nonlinearity, 2009 & 2010



• At a shrinking point there exists an invariant polygon.

• Near the shrinking point this persists as a one-dimensional slow
manifold.



• Near a shrinking point there are two primary sequences of
periodicity regions.
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• Near a shrinking point there are two primary sequences of
periodicity regions.
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• Apply a certain linear coordinate scaling: η → X, ν → Y

• Introduce polar coordinates: X = r cos(θ), Y = r sin(θ)

Theorem (S, Nonlinearity, 2017)

Primary periodicity regions are within O
(

1
k2

)

of r = 1
k
Γ(θ), where

r = Γ(θ) is the non-trivial solution to

Xe−X = Y e−Y

0 1 2 3
0

1

2

3



Theorem (S, Nonlinearity, 2017)

On primary periodicity regions, G±[k,∆ℓ]-shrinking points exist
for large k if and only if κ±∆ℓ > 0 and are located at
θ = θ±∆ℓ +O

(

1
k

)

where:

For ∆ℓ ≥ 0,

κ+∆ℓ = uT0M
∆ℓ

Sℓd
v−d

θ+∆ℓ = tan−1

(

td

t−d

∣

∣κ+∆ℓ

∣

∣

)

etc.
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Non-rotational periodic solutions

• E.g. with δL = 0.1, δR = 1.2,
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Non-rotational periodic solutions
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Outline

1) A sausage-string structure for periodicity regions.

2) Homoclinic corners and infinitely many attractors.

3) Stability of boundary fixed points.
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• Near a homoclinic tangency (smooth), typically get stable periodic
solutions on little intervals.



• Near a homoclinic corner (piecewise-smooth), typically get no
stable periodic solutions.

- S., Chaos, 2016
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• Such subsumed homoclinic connections are codimension-two.
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• If the eigenvalues associated with the saddle satisfy

0 < λ < 1 < σ <
1

λ
,

then stable periodic solutions exist in an infinite sequence of
roughly triangular regions.

- S., IJBC, 2020



• The same behaviour occurs if the saddle is a periodic solution.
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• A subsumed homoclinic connection with λσ = 1 is
codimension-three.

• Here there may exist infinitely many stable periodic solutions.
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• Let X ∈ {L,R}n and Y ∈ {L,R}p with

XY = (YX )0α

for some α 6= 0.

• Suppose
MX = AXn−1 · · ·AX0

has multiplicity-one eigenvalues 0 < λ2 < 1 < λ1 and all other
eigenvalues have modulus less than λ2.

• For j = 1, 2, let ωT

j and ζj be left and right eigenvectors of MX

corresponding to λj with ωT

j ζj = 1, and let

C =

[

ωT

1

ωT

2

]

MY

[

ζ1 ζ2
]

.

• Suppose eT1 ζ1 6= 0.



Theorem (S & Tuffley, IJBC, 2017)

Suppose
i) λ1λ2 = 1 and λ2 < det(C) < 1,

ii) the X -cycle has no points on Σ (the switching manifold),

iii) there exists an X∞YX∞-orbit {pi} homoclinic to the X -cycle
and with p0 = Eu

(

XX
0

)

∩ Σ and pα ∈ Σ, and

iv) there is no i ≥ 0 for which pi ∈ Σ and pi+n ∈ Σ.

Then there exists kmin such that f has an attracting X kY-cycle for
all k ≥ kmin.



Theorem (S & Tuffley, IJBC, 2017)

Suppose
i) det(C) /∈ {−1, 0},

ii) fY0

(

Eu
(

XX
0

))

6⊂ Es
(

XX
0

)

, and

iii) there exists kmin such that f has an attracting X kY-cycle for
all k ≥ kmin.

Then there exists an X∞YX∞-orbit {pi} (possibly virtual)
homoclinic to the X -cycle and with p0 = Eu

(

XX
0

)

∩Σ and pα ∈ Σ,
and λ1λ2 = 1.



Occurrence in an ODE system





du
dt
dv
dt
dw
dt



 =

















































v

w

−α1(u+ 1)− α2v − α3w + γ cos(t)






, u < 0







−1

β1

β2






, u > 0

α1 ≈ 0.0302445699

α2 ≈ 0.1667559781

α3 ≈ 0.4009520660

β1 ≈ −0.3783802961

β2 ≈ −0.5981255840
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Outline

1) A sausage-string structure for periodicity regions.

2) Homoclinic corners and infinitely many attractors.

3) Stability of boundary fixed points.



• Set µ = 0:

x 7→

{

ALx, x1 ≤ 0,

ARx, x1 ≥ 0.
(⋆)



• Set µ = 0:

x 7→

{

ALx, x1 ≤ 0,
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(⋆)

• The origin is a fixed point on the switching manifold.



• Set µ = 0:

x 7→

{

ALx, x1 ≤ 0,

ARx, x1 ≥ 0.
(⋆)

• The origin is a fixed point on the switching manifold.

• problem: for what AL and AR is it stable?



• If n ≥ 2, even if all eigenvalues of AL and AR have modulus less
than 1, 0 can be an unstable fixed point of (⋆).

- Hassouneh, Abed, and Nusse, Phys. Rev. Lett., 2004

- Do and Baek, Commun. Pure Appl. Anal., 2006

◮ Example:
AL has eigenvalues: 0.95 e±1.8i

AR has eigenvalues: 0.95 e±2.6i



x 7→

{

ALx, x1 ≤ 0,

ARx, x1 ≥ 0.
(⋆)

• If n ≥ 2 and the map is non-invertible, orbits can converge to 0 in
a chaotic fashion:



x 7→

{

ALx, x1 ≤ 0,

ARx, x1 ≥ 0.
(⋆)

x 7→

{

ALx+ o(x), x1 ≤ 0,

ARx+ o(x), x1 ≥ 0.
(⋆ ⋆)
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ARx, x1 ≥ 0.
(⋆)

x 7→

{

ALx+ o(x), x1 ≤ 0,

ARx+ o(x), x1 ≥ 0.
(⋆ ⋆)

Theorem (S., J. Dyn. Diff. Eq., 2020)

If 0 is asymptotically stable for (⋆)
then it is also asymptotically stable for (⋆⋆).



x 7→

{

ALx, x1 ≤ 0,

ARx, x1 ≥ 0.
(⋆)

x 7→

{

ALx+ o(x), x1 ≤ 0,

ARx+ o(x), x1 ≥ 0.
(⋆ ⋆)

Theorem (S., J. Dyn. Diff. Eq., 2020)

If 0 is asymptotically stable for (⋆)
then it is also asymptotically stable for (⋆⋆).

Conjecture
If 0 is unstable for (⋆)
then it is also unstable for (⋆⋆).



• Stability can be determined computationally.

- Gardini, Nonlin. Anal., 1992

- Athanasopoulos and Lazar, IFAC Proceedings, 2014



• Stability can be determined computationally.

- Gardini, Nonlin. Anal., 1992

- Athanasopoulos and Lazar, IFAC Proceedings, 2014

Theorem (S., NZJM, 2020)

Let f be a map of the form (⋆). Let Ω ⊂ R
n be compact with

0 ∈ int(Ω). The following are equivalent.
1) 0 is an asymptotically stable fixed point of f .

2) There exists m ≥ 1 such that fm(Ω) ⊂ int(Ω).

3) There exists p ≥ 1 such that fp(Ω) ⊂ int
(

⋃p−1
i=0 f i(Ω)

)

.



• Let Ω be a polytope. Then f i(Ω) is a polytope for all i ≥ 0 and

each
⋃p−1

i=0 f i(Ω) can be encoded with finitely many data points.
◮ Here stability is verified with p = 12:

-2 -1 0 1 2

-1

0

1

2

3



• Let Ω be a polytope. Then f i(Ω) is a polytope for all i ≥ 0 and

each
⋃p−1

i=0 f i(Ω) can be encoded with finitely many data points.
◮ Here stability is verified with p = 12:

-2 -1 0 1 2

-1

0

1

2

3



• Let Ω be a polytope. Then f i(Ω) is a polytope for all i ≥ 0 and

each
⋃p−1

i=0 f i(Ω) can be encoded with finitely many data points.
◮ Here stability is verified with p = 12:

-2 -1 0 1 2

-1

0

1

2

3



• Let Ω be a polytope. Then f i(Ω) is a polytope for all i ≥ 0 and

each
⋃p−1

i=0 f i(Ω) can be encoded with finitely many data points.
◮ Here stability is verified with p = 12:

-2 -1 0 1 2

-1

0

1

2

3



• Let Ω be a polytope. Then f i(Ω) is a polytope for all i ≥ 0 and

each
⋃p−1

i=0 f i(Ω) can be encoded with finitely many data points.
◮ Here stability is verified with p = 12:

-2 -1 0 1 2

-1

0

1

2

3



• Let Ω be a polytope. Then f i(Ω) is a polytope for all i ≥ 0 and

each
⋃p−1

i=0 f i(Ω) can be encoded with finitely many data points.
◮ Here stability is verified with p = 12:

-2 -1 0 1 2

-1

0

1

2

3



• Let Ω be a polytope. Then f i(Ω) is a polytope for all i ≥ 0 and

each
⋃p−1

i=0 f i(Ω) can be encoded with finitely many data points.
◮ Here stability is verified with p = 12:

-2 -1 0 1 2

-1

0

1

2

3



• Let Ω be a polytope. Then f i(Ω) is a polytope for all i ≥ 0 and

each
⋃p−1

i=0 f i(Ω) can be encoded with finitely many data points.
◮ Here stability is verified with p = 12:

-2 -1 0 1 2

-1

0

1

2

3



• Let Ω be a polytope. Then f i(Ω) is a polytope for all i ≥ 0 and

each
⋃p−1

i=0 f i(Ω) can be encoded with finitely many data points.
◮ Here stability is verified with p = 12:

-2 -1 0 1 2

-1

0

1

2

3



• Let Ω be a polytope. Then f i(Ω) is a polytope for all i ≥ 0 and

each
⋃p−1

i=0 f i(Ω) can be encoded with finitely many data points.
◮ Here stability is verified with p = 12:

-2 -1 0 1 2

-1

0

1

2

3



• Let Ω be a polytope. Then f i(Ω) is a polytope for all i ≥ 0 and

each
⋃p−1

i=0 f i(Ω) can be encoded with finitely many data points.
◮ Here stability is verified with p = 12:

-2 -1 0 1 2

-1

0

1

2

3



• Let Ω be a polytope. Then f i(Ω) is a polytope for all i ≥ 0 and

each
⋃p−1

i=0 f i(Ω) can be encoded with finitely many data points.
◮ Here stability is verified with p = 12:

-2 -1 0 1 2

-1

0

1

2

3
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• With n = 2 the map has four parameters:

x 7→























[

τL 1

−δL 0

]

x, x1 ≤ 0,

[

τR 1

−δR 0

]

x, x1 ≥ 0.
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• If 0 is asymptotically stable with µ = 0, then there exists a local
attractor with µ 6= 0.



Stick-slip friction oscillator

ü+ 2ζru̇+ u = u0 cos(ωt)− Fssgn (u̇− v0)− κv0



• Grazing-sliding bifurcations described by

f(x, y) =























[

2eβ cos(α) 1

−e2β 0

][

x

y

]

+

[

µ

0

]

, x ≤ 0,

[

eβ cos(α) 1

0 0

][

x

y

]

+

[

µ

0

]

, x ≥ 0,

where

α =
2π
√

1− ζ2r
ω

, β = −
2πζr
ω

.

- Szalai and Osinga, Chaos, 2008.



Dynamics for µ < 0
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Dynamics for µ < 0
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β = ln
(

1
cos(α)

)

β = 1
3
ln
(

1
cos(α) cos(2α)

) β = 1
2
ln
(

1
cos(2α)

)



Summary

• Rotational periodicity regions have a sausage-string structure.
◮ What structures do non-rotational periodicity regions have?

• Near a subsumed homoclinic connection get roughly triangular
periodicity regions.
◮ Between these how are other periodicity regions organised?

• Asymptotic stability of a fixed point on a switching manifold is
robust to higher order terms.
◮ What about instability?

• Computational methods exist for determining stability.
◮ How to extend these to ODEs (e.g. Filippov systems)?


