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PIECEWISE-SMOOTH MAPS AS POINCARE MAPS

1) Grazing-sliding bifurcations

Y < Ygraz Y = Ygraz Y > Ygraz
“« “«
“— “—
<« “«
« «
« «

P> Get a zero eigenvalue in one piece of the map due to the sliding
motion

- di Bernardo, Kowalczyk & Nordmark, 2002




2) Event collisions for ODEs with time-delayed switching

- Seiber, 2006



3) Corner collisions
2
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> Often get a non-invertible map due to the switching
- di Bernardo, Budd & Champneys, 2001
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® Consider a continuous piecewise-smooth
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BORDER-COLLISION BIFURCATIONS

Consider a continuous piecewise-smooth
map

<0,
>0,

= fL(x; :u)? h(ﬂ?)
fr(z; ), h(x)
where 1 € R is a parameter.

As 1 is varied a border-collision
bifurcation occurs when a fixed point
collides with the switching manifold.
Locally can approximate as

. Arx +bu, x1 <0,
AR‘T + b/L, i 07

where Ay and Apg differ only in their first columns.
By scaling it suffices to consider p = —1,0, 1.

® Often the truncation to piecewise-linear is justified.



MANY DIFFERENT DYNAMICAL TRANSITIONS
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THE BORDER-COLLISION NORMAL FORM

e If (Ap,eq) is observable, equivalently if Ay has no eigenvector v
with v; = 0, then

= Arpx +bu, x1 <0,
AR‘T + b/L, ] = 07

can be transformed to

Crr+ep, w1 <0,
Crx +e1p, x>0,

with companion matrices:



THE BORDER-COLLISION NORMAL FORM

® In two dimensions
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THE BORDER-COLLISION NORMAL FORM

® In two dimensions

7, 1 1
T+ , a1 <0,
[—«h 0 ol
x
1 1
S R i PR
—0r O 0
e If 1, =—71p=a, d =0r = —b, and u =1, get the Lozi family
a 1 1
T + s 33‘1§0,
b 0 0
T
—a 1 1
T+ 5 1 >0
b 0 0




OUTLINE

1) A sausage-string structure for periodicity regions.
2) Homoclinic corners and infinitely many attractors.

3) Stability of boundary fixed points.



OUTLINE

1) A sausage-string structure for periodicity regions.
2) Homoclinic corners and infinitely many attractors.

3) Stability of boundary fixed points.



PERIODICITY REGIONS

s ALx + b/L, x; < 07
Agx +bu, x1 >0.
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PERIODICITY REGIONS

s ALx + b/,t, x; < 07
Agxr +bu, 1 >0.
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PERIODICITY REGIONS
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PERIODICITY REGIONS

{AL:c +bu, a1 <0,
|_)

Apx +bu, x1 >0.




INTEGRATE-AND-FIRE NEURONS

potential: V=-V+I-F(t) (I =1.5)
reset law: Vit)=1 = V(t)=0
square-wave forcing: F(t) = Asgn [sin(%)]

0.2 0.22 0.24 0.26 0.28 0.3

- Tiesinga, 2002



BUSINESS CYCLE DYNAMICS

income: Y,=¢cY, 1+ 1

net investment: I; = max[a(Yi—1 — Yi_2), —arY;_o]

- Sushko, Gardini & Puu, 2004



DC/DC POWER CONVERTERS

yk:)‘k(yk_KF(t))v k= 1,2
Kp(t) =Tes o 12
E=wyi(lt]) — Ova(l[t]) + 56

- Zhusubaliyev & Mosekilde, 2008



® An LLR-cycle:

L




® The left and right boundaries of the periodicity regions are
border-collision bifurcations where one point of an S-cycle lies on
the switching manifold.

L R




e Shrinking points are where an S-cycle has two points on the
switching manifold, where S = F[¢, m,n] corresponds to rigid
rotation on a circle:

n — period
m

o= rotation number

¢ — number of L’s

e For example, F[2,2,5| = LRRLR  —




e Four distinct curves of border-collision bifurcations.
® These admit a nice combinatorical characterisation in terms of
£, m, and n.

- S & Meiss, Nonlinearity, 2009 & 2010



® At a shrinking point there exists an invariant polygon.

® Near the shrinking point this persists as a one-dimensional slow
manifold.



e Near a shrinking point there are two primary sequences of
periodicity regions.

km+m=™ G~ [k, 0]
kn+n—

g7 [k, 1]















e Near a shrinking point there are two primary sequences of
periodicity regions.

km+m=™ G~ [k, 0]
kn+n—

g7 [k, 1]



e Apply a certain linear coordinate scaling: n — X, v — Y
¢ Introduce polar coordinates: X = rcos(6),Y = rsin(6)

THEOREM (S, Nonlinearity, 2017)

Primary periodicity regions are within (9(,3—2) of r = %F(G), where
r =T(0) is the non-trivial solution to

Xe X =Ye ¥




THEOREM (S, Nonlinearity, 2017)

On primary periodicity regions, G*[k, Al]-shrinking points exist
for large k if and only if ’iiz > 0 and are located at

0= Hie + O (%) where:

For Al >0,

+ _ . TasAL
Kap = g Mgzv_g

_ t
HXe =tan ! (715_61 ‘iXA)

etc.
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Dynamics of an invertible
piecewise-linear circle map

- S, Nonlinearity, 2018 /
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NON-ROTATIONAL PERIODIC SOLUTIONS

° E.g. with 65, =0.1, dgp = 1.2,
7, 1 1
—or, 0

T+ K, IL‘1§O,

o

X =




NON-ROTATIONAL PERIODIC SOLUTIONS
° E.g. with 65, =0.1, dgp = 1.2,

7, 1 1
-6, 0
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OUTLINE

1) A sausage-string structure for periodicity regions.
2) Homoclinic corners and infinitely many attractors.

3) Stability of boundary fixed points.



HOMOCLINIC CORNERS
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HOMOCLINIC CORNERS
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HOMOCLINIC CORNERS

0 =0.2,6p =2
TLZI.G,TRZO




e Near a homoclinic tangency (smooth), typically get stable periodic
solutions on little intervals.



e Near a homoclinic corner (piecewise-smooth), typically get no
stable periodic solutions.
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- S., Chaos, 2016
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HOMOCLINIC CORNERS

5, =02, 0p =2

7L = 1.517, 7 = 0.725

® Such subsumed homoclinic connections are codimension-two.









e [f the eigenvalues associated with the saddle satisfy

1
0<)‘<1<0<X’

then stable periodic solutions exist in an infinite sequence of
roughly triangular regions.

14
+
Ak—l,O
+
Ak,o
+
A/c+1,o
+
I+ Alc+2,o
k+3,0 n

- 8., IJBC, 2020



® The same behaviour occurs if the saddle is a periodic solution.







e A subsumed homoclinic connection with Ao =1 is
codimension-three.

® Here there may exist infinitely many stable periodic solutions.
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Let X € {L,R}" and Y € {L, R} with

for some « # 0.
Suppose
My =Ax, - Ax,
has multiplicity-one eigenvalues 0 < Ay < 1 < A; and all other
eigenvalues have modulus less than As.

For j = 1,2, let w;-r and (; be left and right eigenvectors of My
corresponding to \; with w;-r(j =1, and let

N
C= [Z;T] My [¢1 Cal.

Suppose e (1 # 0.



THEOREM (S & TuUrFLEY, [JBC, 2017)

Suppose
1) M =1 and Ay < det(C) < 1,
ii) the X-cycle has no points on 3 (the switching manifold),
iii) there exists an X>°YX>-orbit {p;} homoclinic to the X-cycle
and with pg = E* (Xg() N and py € X, and
iv) there is no i > 0 for which p; € ¥ and pi,, € 2.

Then there exists kmin such that f has an attracting X*Y-cycle for
all k > knin .



THEOREM (S & TuUrFLEY, [JBC, 2017)
Suppose
1) det(C) ¢ {~1,0},
i) fyo(E*(Xg)) ¢ E*(Xg), and
iii) there exists kmin such that f has an attracting X*Y-cycle for
all k > kmin.
Then there exists an X*°YX>-orbit {p;} (possibly virtual)
homoclinic to the X -cycle and with pg = E* (Xg() NY and p, € %,

and )\1)\2 =1.



OCCURRENCE IN AN ODE SYSTEM

[ v
w , u<O0
du
$ 1 _ ) [moa(u+1) — v — agw + vy cos(t)
a|l =3
dw —1
d
' /81 ) u>0
| B2

a1 ~ 0.0302445699
ay ~ 0.1667559781
a3 ~ 0.4009520660
b1 ~ —0.3783802961
B & —0.5981255840



0 0.002 0.004 0.006 0.008 0.01

Y — Yeraz



OUTLINE

1) A sausage-string structure for periodicity regions.
2) Homoclinic corners and infinitely many attractors.

3) Stability of boundary fixed points.



® Set pu=0:

Apx,
Apx,

.’ElSO,
.1‘120.



® Set pu=0:

AL.’E, 1 S 07
€T
Agzr, x1>0.

® The origin is a fixed point on the switching manifold.



® Set pu=0:
s AL.’E, ] S 07
T
Agzr, x1>0.

® The origin is a fixed point on the switching manifold.

® PROBLEM: for what Ay, and Ag is it stable?



e [f n > 2, even if all eigenvalues of Ay and Ar have modulus less
than 1, 0 can be an unstable fixed point of (¥).
- Hassouneh, Abed, and Nusse, Phys. Rev. Lett., 2004
- Do and Baek, Commun. Pure Appl. Anal., 2006

> Example:
Ap has eigenvalues: 0.95 ™18
Ap has eigenvalues: 0.95 26!

Az,




x — - (%)

® If n > 2 and the map is non-invertible, orbits can converge to 0 in
a chaotic fashion:

0

#
Oy i
=5



Aan r1 < 07
Agx, x1>0.
AL.T —|—0(a:),
AR.T —|—0(a:),

IN
o

x

x120



ALxu r1 < 07
x
Agx, x1>0.
o Arx +o(x), z1 <0,
Apz +o(z), x1>0.

THEOREM (S., J. Dyn. Diff. Eq., 2020)
If 0 is asymptotically stable for (%)
then it is also asymptotically stable for (k).



ALxu r1 < 07
x
Agx, x1>0.
= Arx +o(x), z1 <0,
Apz +o(z), x1>0.

THEOREM (S., J. Dyn. Diff. Eq., 2020)
If 0 is asymptotically stable for (%)
then it is also asymptotically stable for (k).

CONJECTURE
If 0 is unstable for ()
then it is also unstable for (k).



e Stability can be determined computationally.

- Gardini, Nonlin. Anal., 1992
- Athanasopoulos and Lazar, IFAC Proceedings, 2014



e Stability can be determined computationally.
- Gardini, Nonlin. Anal., 1992
- Athanasopoulos and Lazar, IFAC Proceedings, 2014

THEOREM (S., NZJM, 2020)

Let f be a map of the form (% ). Let Q C R™ be compact with
0 € int(Q2). The following are equivalent.

1) 0 is an asymptotically stable fixed point of f.
2) There exists m > 1 such that f™(2) C int(Q2).

3) There exists p > 1 such that fP(2) C int (Uf;ol Z(Q))



* Let Q be a polytope. Then f(Q2) is a polytope for all i > 0 and
each Uf:_& f1(2) can be encoded with finitely many data points.
» Here stability is verified with p = 12:
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® With n = 2 the map has four parameters:

1
L r, I < 07
—or, 0

X —



TR
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o, = 1.4
op=—1.2
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e If 0 is asymptotically stable with ¢ = 0, then there exists a local
attractor with p # 0.



STICK-SLIP FRICTION OSCILLATOR

i+ 2¢,0 + u = ug cos(wt) — Fysgn (4 — vp) — Kup

u(t)
up cos(wt)
T
|
|

—_—
0




® Grazing-sliding bifurcations described by

2¢° 1
e co;ﬁ(a) ] Tl (e <o,
—e 0] |y 0
fay) = ePcos(a) 1| |z
+1%, w>0,
0 ol ly| o
where
21/ 1 — (2 5 27(;
o= _, =
w w

- Szalai and Osinga, Chaos, 2008.



DYNAMICS FOR 1 < 0
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DYNAMICS FOR p < (
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SUMMARY

Rotational periodicity regions have a sausage-string structure.
» What structures do non-rotational periodicity regions have?

Near a subsumed homoclinic connection get roughly triangular
periodicity regions.
> Between these how are other periodicity regions organised?

Asymptotic stability of a fixed point on a switching manifold is
robust to higher order terms.

> What about instability?

Computational methods exist for determining stability.
> How to extend these to ODEs (e.g. Filippov systems)?



