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A special non-symmetric N ×N matrix with eigenvalues 0, 1, 2, . . . , N − 1 is
presented. The matrix appears in sampling theory. Its right eigenvectors, if
properly normalized, give the inclusion probabilities of the Conditional Pois-
son design (for all different fixed sample sizes). The explicit expressions for
the right eigenvectors become complicated for N large. Nevertheless, the left
eigenvectors have a simple analytic form. An inversion of the left eigenvector
matrix produces the right eigenvectors − the inclusion probabilities. Finally,
a more general matrix with similar properties is defined and expressions for
its left and right eigenvectors are derived.

1 Introduction

There are many real N × N matrices A that have eigenvalues 0, 1, 2, . . . , N − 1.
The most general one is given by A = P∆P−1, where P is a matrix with linearly
independent column vectors and ∆ is a diagonal matrix with the given integers
on the diagonal; cf., e.g., Eves (1980, pp. 223-225). However, in this paper we
present a special non-symmetric matrix A with these eigenvalues. The matrix A
is simple but not the matrix P of its right eigenvectors. The right eigenvectors of
A are of special interest in sampling theory. They give inclusion probabilities of an
important sampling design− the Conditional Poisson (CP) design. They are difficult
to calculate in general and simple explicit analytic formulae are not available. In
the literature (Chen, 1997, Aires, 1999, Traat et al., 2004, Bondesson et al., 2004),
some recursive formulae and algorithms for their calculation are presented. In this
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paper we develop an eigenvector approach. The eigenvector, properly normalized,
corresponding to the eigenvalue n − 1 (n = 1, 2, . . . , N) represents the inclusion
probabilities of the CP design with fixed sample size n. Consequently, the matrix
P yields the inclusion probabilities for all possible sample sizes, simultaneously.

Surprisingly, in spite of the complexity of P, the matrix Q = P−1 of left eigenvec-
tors has a simple form. The matrix Q is presented in this paper. The inclusion
probabilities of the CP design can now be obtained by just inverting Q.

It appears that the matrix A is a special case of a more general matrix that might
have interest in pure linear algebra as well. Expressions for the left and right eigen-
vectors of this matrix are derived.

The paper is organized as follows. First, the sampling origin of the matrix A is
given. The matrix appears as the coefficients in a linear equation system with the
inclusion probabilities of the CP design (of size n) as unknowns. The solution of the
system is an eigenvector of A that corresponds to the eigenvalue n− 1. Expressions
for the right and left eigenvectors are presented.

In the second part of the paper, which also contains proofs, generalizations are
made to a wider class of matrices, still having consecutive integer eigenvalues and
the same simple expressions for the left eigenvectors. Explicit expressions for the
right eigenvectors are given as well. The case of equal elements is treated as a
limiting case. Left eigenvectors are not much treated in the matrix literature. This
paper demonstrates their usefulness in practical problems involving non-symmetric
matrices.

2 The sampling origin

Here we describe how the matrix A (not yet defined) appears in sampling theory.
Consider a finite population with N units, U = {1, 2, . . . , N}. Let I be a multivariate
random Bernoulli vector describing random selection of units from U :

I = (I1, I2, . . . , IN), Pr(Ii = 1) = pi, Ii independent.

An outcome of I is a Poisson sample; Ii = 1 means that unit i is sampled and Ii = 0
means that it is not. The number pi is the inclusion probability of unit i under the
Poisson design. The sample has random size

∑
Ii. Here and below all sums and

products without range specification mean that the index runs from 1 to N .

Now, let us consider a new Bernoulli vector conditional on a sample size:

ICP = I |
∑

Ii = n),

where n is any fixed number between 1 and N . The outcome of ICP is a Conditional
Poisson sample. It has fixed sample size. Denote the CP inclusion probabilities by

πi = Pr(ICP
i = 1), πij = Pr(ICP

i = 1, ICP
j = 1).
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There exists a simple formula connecting these inclusion probabilities with the orig-
inal pis (e.g. Aires, 1999):

πij =
pjqi

pj − pi

πi +
piqj

pi − pj

πj, i 6= j, pi 6= pj, (1)

where qi = 1− pi. This formula can also be proved by a Gibbs sampling reasoning
as is now indicated.

Assume that a CP-sample of size n has been generated. Two units i and j are
then picked out such that Ii = 1, Ij = 0 or Ii = 0, Ij = 1. Without changing the
distribution, we can simulate new values of Ii and Ij by using the probabilities

Pr(Ii = 1, Ij = 0) =
piqj

piqj + pjqi

and Pr(Ii = 0, Ij = 1) =
pjqi

piqj + pjqi

. (2)

Note that the probabilities in (2) can be expressed through inclusion probabilities,
e.g. Pr(Ii = 1, Ij = 0) = Pr(Ii = 1) − Pr(Ii = 1, Ij = 1). Now we get under
stability that the probabilities in (2) must equal πi − πij and πj − πij, respectively.
Dividing the two obtained equations by each other and solving for πij we get (1).
Cf. Bondesson et al. (2004)

The following relation holds for any fixed size sampling design:∑
j; j 6=i

πij = (n− 1)πi, (3)

Using (1) and (3), we get the equation system

(
∑
j; j 6=i

pjqi

pj − pi

)πi +
∑
j; j 6=i

piqj

pi − pj

πj = (n− 1)πi, i = 1, 2, . . . , N.

We want to solve it with respect to πi. Denoting the vector of these probabilities
by π: N × 1, we get the system in matrix form:

Aπ = (n− 1)π,

where

A = diag(1TC) + C : N ×N, (4)

with cij =
piqj

pi − pj

, cii = 0, pi 6= pj, (5)

and 1 is a column vector of ones. We see that the unknown π is the right eigenvector
of A corresponding to the eigenvalue n − 1. Since n is any integer 1, 2, . . . , N , the
eigenvalues of A are consecutive integers {0, 1, . . . , N − 1}.
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3 The matrix A

The matrix A in (4)-(5) has a simple form. It is non-symmetric but with a special
structure,

aij = cij = 1− cji.

Its elements have the alternate form,

cij =
piqj

piqj − pjqi

.

Its diagonal elements are the column sums of C, aii = 1TC. Its rows sum up to a
constant,

A1 = (N − 1)1,

showing that the eigenvector corresponding to the largest eigenvalue has all its
coordinates equal. In the sampling context, it means that for a sample of size
n = N (full population), the inclusion probabilities are equal to 1. The matrix A is
singular, it has an eigenvalue 0.

As an example, let the pis be given by the vector p = (6/10, 7/10, 8/10, 9/10). The
pis sum to 3. Then the matrix A is:

A =


28
5 −9/5 −3/5 −1/5
14
5

39
20 −7/5 − 7

20

8/5 12
5 −1/5 −4/5

6/5 27
20 9/5 −27

20

 .

Its eigenvalues are 3, 2, 1, 0. Right and left eigenvectors are provided by the following
matrices:

P =
1

2500


−756 597 −138 9

−756 777 −203 14

−756 912 −308 24

−756 1017 −423 54

 , Q =


−160

9
135
7 −5 5

27

−80
3 45 −20 5/3

−40 105 −80 15

−60 245 −320 135

 .

The columns in P are right eigenvectors and the rows in Q are left eigenvectors.
Here Q = P−1. After normalizing each column of P to sum up to a sample size: first
column to N , second to N −1, etc., we get the eigenvector-matrix P∗ with inclusion
probabilities for all possible sample sizes in columns:

P∗ =


1 0.542 0.257 0.089
1 0.706 0.379 0.139
1 0.828 0.575 0.238
1 0.924 0.789 0.534

 .

For comparison note that the Poisson design with expected sample size 3 has inclu-
sion probabilities given by the vector p but the CP design with fixed sample size 3
has inclusion probabilities given in the second column of P∗.
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4 Eigenvectors of A

In sampling context, we may use directly the definition of inclusion probabili-
ties to construct the eigenvectors. Unit i is included if any of the samples y =
(y1, y2, . . . , yN) in which yi = 1 occurs. Here yj ∈ {0, 1} and |y| =

∑
yj = n, the

sample size. Consequently, for the CP design we have:

πi =
1

c

∑
y; yi=1, |y|=n

N∏
j=1

p
yj

j q
1−yj

j ,

where the normalizing constant c can be found from the condition
∑

πj = n. For
example, for N = 3 we have the non-normalized eigenvectors for sample sizes n =
3, 2, 1:

P =

 p1p2p3 p1(p2q3 + q2p3) p1q2q3

p2p1p3 p2(p1q3 + q1p3) p2q1q3

p3p1p2 p3(p1q2 + q1p2) p3q1q2

 .

Note that here we solved the algebraic problem of finding eigenvalues-eigenvectors
with the help of their statistical meaning: eigenvalues are sample sizes minus 1,
and eigenvectors are the inclusion probabilities of the CP design. This adds one
more example to the statistical proofs of matrix results by Rao (2000). Though
the expressions in P are simple functions of pj and qj, finding all the necessary
combinations may become time consuming for N large. However, it appears that
the left eigenvectors have a simple formula for any N .

The matrix Q of left eigenvectors has elements in the form

Qij = pi−2
j qN−i

j /uj, (6)

where

uj =
N∏

k=1, k 6=j

(pjqk − pkqj). (7)

One can easily check by a computer algebra package that Q satisfies the equation of
left eigenvectors, QA = ∆Q. A proof (in a more general setting) is given in section
5. Right eigenvectors are obtained by inverting Q. The matrices P and Q in section
3 were calculated in this way.

5 Generalizations

5.1 The matrix A in a more general form

Let A = (aij) : N ×N be defined as

aij =
ri

ri − rj

, i 6= j, and aii =
∑
i; i6=j

aij, (8)
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where the ris are distinct real or complex numbers. This matrix reduces to the
special case (4)-(5) if we set ri = pi/(1− pi), 0 < pi < 1.

Let Q = (Qij) : N ×N be defined as

Qij = ri−2
j /uj, where uj =

∏
k; k 6=j

(rj − rk). (9)

In the following we show that the matrix A has integer eigenvalues, and its left
eigenvectors are given by the rows of Q.

Theorem 1. The eigenvalues of A are the integers 0, 1, 2, . . . , N − 1. Moreover,
QA = ∆Q, where ∆ = diag(N − 1, N − 2, . . . , 2, 1).

Proof: We must prove, for i = 1, 2, . . . , N, k = 1, 2, . . . , N, that
∑N

j=1 Qijajk =
(N − i)Qik, i.e.∑

j; j 6=k

ri−2
j (

∏
ν; ν 6=j

1

rj − rν

)
rj

rj − rk

+ ri−2
k (

∏
ν; ν 6=k

1

rk − rν

)
∑

µ; µ 6=k

rµ

rµ − rk

= (N − i)ri−2
k

∏
ν; ν 6=k

1

rk − rν

.

For symmetry reasons, it suffices to consider the case where k = N. We put rN = x
and set N = M + 1. After some reordering of the terms and factors and since
r/(r − x) = 1 + x/(r − x), the formula above transforms into

M∑
j=1

ri−2
j (

M∏
ν; ν 6=j

1

rj − rν

)
rj

(rj − x)2
= (−1)M−1xi−2 (

M∏
ν=1

1

rν − x
) (i− 1 +

M∑
µ=1

x

rµ − x
).

The left-hand side is called L(x) and the right-hand side R(x). Apparently L(x) is
of the form

∑M
j=1 bj(rj −x)−2, where each bj is a constant. As to the function R(x),

it is easily seen that it equals the derivative of

g(x) = (−1)M−1xi−1

M∏
ν=1

1

rν − x
,

which by a partial fraction decomposition can be rewritten into the form g(x) =∑M
j=1 cj(rj − x)−1. Hence R(x) =

∑M
j=1 cj(rj − x)−2. Multiplying L(x) and R(x) by

(rν−x)2 and then letting x → rν , we see that bν = cν for each ν. Hence L(x) = R(x)
as desired, and the proof is completed.

The inverse of Q gives the right eigenvectors of A. The explicit expression for Q−1

is given in the next theorem.

Theorem 2. The inverse matrix Q−1 is given by P = (Pij), where

Pij = (−1)N+jriρ
(−i)
N−j, (10)
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and ρ
(−i)
N−j denotes the sum of all possible products of N − j distinct factors from the

set {r1, r2, . . . , ri−1, ri+1, . . . , rN}.
Proof: Let P be as stated. We can either prove that QP = I or that PQ = I. We
choose to verify the last relation, i.e.

N∑
j=1

PijQjk = δik, (11)

where δik = 0 if i 6= k and otherwise 1. Apparently

N∑
j=1

PijQjk = ri(
N∏

ν; ν 6=k

1

rk − rν

)
N∑

j=1

rj−2
k (−1)N+jρ

(−i)
N−j.

We set rk = x and then (11) will be equivalent to

N∑
j=1

rix
j−2(−1)N+jρ

(−i)
N−j = δik

N∏
ν; ν 6=k

(x− rν).

For i = k, we have ri = x and hence rix
j−2 = xj−1. Obviously the relation holds

since the left-hand side is the Taylor expansion of the product on the right-hand side.
If i 6= k, we must show that

∑N
j=1 xj−2(−1)N+jρ

(−i)
N−j = 0 for x = rk or equivalently

that
N∑

j=1

xj−1(−1)N+jρ
(−i)
N−j = 0

for x = rk. However, the left-hand side is just the Taylor expansion of
∏

ν; ν 6=i(x−rν)
and the product is 0 at x = rk because the factor x− rk is not excluded. The proof
is completed.

As an example we present the related matrices in the 4× 4 case. The matrix itself
is:

A =


v1

r1

r1−r2

r1

r1−r3

r1

r1−r4
r2

r2−r1
v2

r2

r2−r3

r2

r2−r4
r3

r3−r1

r3

r3−r2
v3

r3

r3−r4
r4

r4−r1

r4

r4−r2

r4

r4−r3
v4

 ,

where vj =
∑

k; k 6=j
rk

rk−rj
, j = 1, 2, 3, 4, are the column sums. The left eigenvectors

in the rows of Q are:

Q =


r−1
1 /u1 r−1

2 /u2 r−1
3 /u3 r−1

4 /u4

1/u1 1/u2 1/u3 1/u4

r1/u1 r2/u2 r3/u3 r4/u4

r2
1/u1 r2

2/u2 r2
3/u3 r2

4/u4

 ,
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where uj =
∏

k; k 6=j(rj − rk), j = 1, 2, 3, 4. The right eigenvectors in the columns of
P are:

P =


−r1r2r3r4 r1(r2r3 + r2r4 + r3r4) −r1(r2 + r3 + r4) r1

−r1r2r3r4 r2(r1r3 + r1r4 + r3r4) −r2(r1 + r3 + r4) r2

−r1r2r3r4 r3(r1r2 + r1r4 + r2r4) −r3(r1 + r2 + r4) r3

−r1r2r3r4 r4(r1r2 + r1r3 + r2r3) −r4(r1 + r2 + r3) r4

 .

In row i and column j of P, one finds the signed sum of all possible products
containing ri and N − j other distinct factors. The sign is (−1)N+j.

5.2 Equal elements ri

The results in section 5.1 provide a method to calculate simultaneously and rapidly
all the product sums displayed in P. The simple matrix Q is just inverted exactly
or numerically in high precision using a computer. However, it is required that all
the ris are distinct. If some ri are equal, the matrix P is still well defined, though
singular, but A and Q are not. Such a P is needed in sampling theory, where it
yields inclusion probabilities for the CP design.

In the case of equal ris, the method can be modified so that it still works. We first
make all the ris distinct by just adding a multiple of a small number x to equal
elements. For example, if ri = ri+1 = . . . = ri+ν , then the modified elements are
r′i = ri, r′i+1 = ri + x, . . . , r′i+ν = ri + νx. For the modified elements the matrix Q
exists and can be calculated by (9). Next we invert Q and get P for the r′is. As x
tends to 0, P tends to the desired matrix with the original ris.

Of course, there are also obvious recursive methods to obtain the product sums
in P, both for distinct and non distinct ris. For example, consider the function
gi(x) =

∏
ν; ν 6=i(x + rν). By a Taylor expansion, we have

gi(x) = xN−1 + ρ
(−i)
1 xN−2 + ρ

(−i)
2 xN−3 + . . . .

The coefficient ρ
(−i)
j−1 in front of xN−j gives the sum of all products of j − 1 distinct

factors, all different from ri. Computer algebra packages are able to calculate high
order Taylor expansions. Thus, except for the sign, row i in P is obtained by just
reading off all the Taylor coefficients in reversed order and then multiplying by ri.
Certainly this method is more stable than the inversion method for large values of
N.
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