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We consider partitioned linear models where the model marix (X; : X5) has

full column rank, and concentrate on the special case wKg¢d,; = 0 when we say

that the model isrthogonally partitionedWe assume that the underlying covariance
matrix is positive definite and introduce tk#iciency factorization multipliewhich
relates the total Watson efficiency of ordinary least squares to the product of the
two subset Watson efficiencies. We illustrate our findings with several examples and
present a literature review.

1 Introduction and mise-en-scene

In this paper we consider the general partitioned linear (or Gaul3—Markov) model
y = X160, + X8, + ¢, (1.1)

or in another notation,

Mlg = {y, X12/812, V} = {y, X1/61 —|— XQ,BQ, V}, (12)
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with
E(y) = X128;5, E(g) =0, cov(y) =cov(e) =V, (1.3)

whereE(-) denotes expectation (or expected value) and-) denotes the covariance (or
dispersion) matrix. The vectgr is ann x 1 observable random vectat,is ann x 1
unobservable random error vector, and

- (2)

is app2 x 1 vector of unknown parameters with, = p; + ps = p, with 38, (p; x 1) and
B, (p2 x 1). The model (or design) matriX;, isn x pjo and is partitioned columnwise
as

X12 = (Xl . Xg), (15)

with p1o = p1 + p2, Xy (n X p1) andX, (n x pg). Both the model matrixX;, and the
covariance matrixy/ are known. Usually the model matrX;, is denoted by jusk and
the number of its columns by just

When the model matriX,, has full column rank and the covariance mawixs pos-
itive definite, then as is well known, the veciay, is estimable, and thOLSE (ordinary
least squares estimator) and Bl&JE (best linear unbiased estimator or Aitken estimator)
of 3,, under the full modelM, are, respectively,

OLSE(B,, | M12) = By, = (g;) = (X5 X12) ' Xy (1.6a)
BLUE<IB12 ‘ Ml2) - BlZ = (gl> - (X,12V_1X12)_1X/12V_1Y7 (1-6b)
2

with (-)’ denoting transpose. The corresponding covariance matrices are, respectively,
cov(Ba | Miz) = (X5, X12) ' X, VXp(X]5X0o) (1.7a)
cov(Bis | M1a) = (X5, V1X10) 7Y, (1.7b)

and hence from the Gaul3—Markov theorem [43], we have the Lowner ordering, see, e.g.,
Wang & Chow [55, p. 207],

cov(Byy | Mia) =1 cov(By, | M1a) | (1.8)

or equivalently, the matrix difference between the two matrices in (1.8) is nonnegative
definite.

There is no unique way to measure how “bad” @eSE could be with respect to the
BLUE. Almost certainly the most frequently used measure idtaeson efficiencwhich
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is defined as the ratio of the generalized variances (determinants of the corresponding
covariance matrices) in (1.7a) and (1.7b):

eov(Brg | Ma2)| | X5, X 0]

off (B, | My) = A = ,
Bz | M) lcov(Byy | Mi2)| X1 VXia| - [ X, VX

(1.9)

where| - | denotes determinant. We calf(3,, | Mi,) as defined by (1.9) theotal
Watson efficiencgf the OLSE 3,, in the modelM 5.

We define thesubset Watson efficienoythe OLSEBi (1 =1,2) in the modelM 5

|COV(5i1 | M)
lcov(B | Mi2)| 7

and theefficiency factorization multipliet5 by

eff(BQ | M12) _ |COV(ﬁ2 ’ M12)‘ (110)

|C0V(B2 | Mio)|

eﬂ(él | Mio) =

Yig = eff(By, | Miz) (1.11)

B eff(,@l | Mi2) 'GH(BQ | Mi2) 7

or equivalently by
eff (B | Maz) = 1z - eff (B, | Muz) - eff (B, | Mya). (1.12)
We are interested in characterizing > 1, y12 = 1, ory15 < 1. Whenvy, =1, i.e.,
off (B | Miz) = eff(8, | May) - eff (B, | Myz), (1.13)

then we say that the Watson efficierfegtorizes Since the Watson efficiency is nonneg-
ative and can never exceedit follows at once from (1.13) that

eff(,éw | Mlg) =1& Y12 = 1 = eff([;'l | Mlg) =1 & GH(BQ | Mlg) =1.
(1.14)

But we may strengthen the result (1.14) to

eff(By | M) =1 = =1 & eff(8, | M) =1 & eff(B, | Mi2) = 1.
(1.15)

To prove (1.15), we note that from (1.8) it follows at once that

|COV(612 | Myp)| > |C0V(B12 | M) (1.16)

with equality if and only if the covariance matrices in (1.16) are equal, see, e.g., Marshall
& Olkin [42, (1979)], and then in the modéW,

1312 = /él? (1-17)
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with probability 1. This result together with the definition (1.11) establishes (1.15).

When
eff (B, | Miz) = eff(B) | M12) & iz eff(By | Mi2) =1, (1.18)
or when
eff (B)5 | Mis) = eff (By | M12) & ma-eff(B, | Mi) =1, (1.19)

then we say that there israduction of the Watson efficiency of typa/then

off By | Miz) = 712 - eff(B) | Mi2) & eff(By | My2) =1, (1.20)
or when
eff (B1y | Mis) = 712 - eff(By | M12) & eff(By | My) =1, (1.21)

then we say that there israduction of the Watson efficiency of type 2

We illustrate these formulas with several examples and review the relevant literature.
For further related results see Chu [16] and Chu, Isotalo, Puntanen & Styan [17, 18, 19].

2 Examples

Example 2.1: A simple example withn =4 andp = 2

For our first example let us consider the model matrix

1 —1
X = (X1 : Xy) = b =2 (2.1)
12 — 1 - 2) — 1 +2 .
1 +1
and the covariance matrix
3 1 1 3p
1 31 1
V=11 13 1 (2.2)
3p 11 3
Then the matrixV in (2.2) is positive definite whenever
2
—— < p<+L (2.3)

3
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To prove (2.3) we may use Haynsworth’s inertia additivity formula [48, 80.10] which
shows that the matri¥ in (2.2) is positive definite provided the Schur complement of the

top left3 x 3 submatrix
- /3p R I
11 =3- — | = _
3—(3p 1 1) Tl R
1 -1 -1 4 1

— 2(1 —p)(2+3p) >0, (2.4)

— = W

1
3
1

U

3—(3p 1 1)(

which establishes (2.3).

With the model matrixX,, as in (2.1), and with the covariance matNxas in (2.2)
and positive definite, we obtain the variances

var(@) = % and var([%) = 1 ; 50 (2.5a)
Var(ﬁz) = H and var(ﬁg) = 115_03/). (2.5b)

The covariancesov(3;, ;) = cov(ﬁl, Bg) = 0, and so the generalized variances are the
products of the corresponding variances:

(24 3p)(1 = p)
(14 p)(7—6p)

To ease the notation, we write here

and | cov(By,)] = (11+ 32)551 —30) . (2.6)

|COV(512)| =

var(@) = Var(@ | M), Var(@) = Var(@ | Mis), i=1,2, (2.7a)

COV(Bl; 32) = COV(BI; 32 | Mia), COV(ﬁAla 52) = COV(ﬁAhBQ | M) (2.7b)
COV(BIQ) = COV(BH | M1a), COV(BH) = COV(BH | Mia). (2.7¢)

The subset Watson efficiencies are
off(f) = =23 g () = o) 2.8)

3(1+p)(11 +3p) (7—6p)(11 = 3p)

and the total Watson efficiency is

400(2 + 3p)(1 — p)
(1+p)(11+ 3p)(7T = 6p)(11 — 3p)
the product of the two subset Watson efficiencies in (2.8), and so in this example the

efficiency factorization multipliery;» = 1 and the total Watson efficiency factorizes for
all p such that the matri¥ in (2.2) is positive definite.

eﬁ(@m) = = eﬁ(ﬁl) : eﬁr(@) 5 (2.9)
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It is interesting to note that in this example withy = 1, we have

R . A 1
off(Brs) =1 & eff(5) =1 & eff(f) =1 & p= (2.10)
and so there is then (with= 1/3) a reduction of the total Watson efficiency here of both

type 1 and type 2, see (1.18)—(1.21) above.

Let us now consider the model matrix

-1
+1
+2 ]
-2

X2 = (Xl : Xz) = (2.11)

—_ = =

which is the matrixX in (2.1) with rows2 and4 switched, and the covariance matrix

3 1 1 3p
1 31 1

V = 113 1| (2.12)
3p 11 3

which is the same as in (2.2) above. We recall Wian (2.12) is positive definite provided
that—2/3 < p < 1, see (2.3) above.

We obtain the variances

- 317 —198p — 99,2 . 11+ 3p
var(fy) = 3077 — 70p — 357 and var(f;) = g (2.13a)
~ 12(1 — p? - 443
var(fz) = — —(70p f Z)’>p2 and var(fy) = Tp , (2.13b)
and hence the subset Watson efficiencies are
. 8(317 — 198p — 99p?) . 300(1 — p?)
ff = d eff = :
M) =5 0, s 1y 4 ) = T, —sma T
(2.14)
The generalized variances are
~ 8(2+3p)(1—p A 343 + 414p — 9p?
| cov(Bio)| = 7(7 — 70;(_ 3p2> and | cov(By,y)| = 1600 (2.15)
and so the total Watson efficiency is
A 12800(3p + 2)(1 —
eff (B5) = ki) (2.16)

(302 + T0p — 77)(343 + 414p — 9p%) -
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The efficiency factorization multiplier

eff(B1,)  16(2+3p)(4+ 3p)(11+ 3p)(77 — T0p — 3p?)

o off(B,) - eff(3,) (1 +p)(317 — 198p — 99p2)(343 + 414p — 9p?) (2.17)

which seemingly does not simplify (further). We ptot/s. p in Figure 2-1a and note that
~ increases monotonically with, and thaty < 1 for p < 0. Interestingly wherp = 0,
then

108,416

= 0 0.9971 2.1
108,731 0.9971, (2.18)

g

andy = 1 whenp = 1/3, thatis,V has intraclass correlation.

TABLE 2-2a: Coded data for an experiment with a lathe due to M. R. Delozier.

S F Y S F Y
-1 -1 54.5 -2 0 20.1
-1 -1 66.0 +v2 0 2.9

1 -1 11.8 0 0 3.8

1 -1 14.0 0 0 2.2
-1 1 5.2 0 0 3.2
-1 1 3.0 0 0 4.0

1 1 0.8 0 0 2.8

1 1 0.5 0 0 3.2

0 —V2 86.5 0 0 4.0

0 +v2 0.4 0 0 3.5

Feed

02 04 06 08

rho

FIGURE 2-1a: Plot of the efficiency factor- FIGURE 2-2a: Scatter plot ob' vs. F' for
ization multiplier v (vertical axis) vs. the the lathe data in Table 2-2a. Numbers in
correlationp (horizontal axis) for the exam- the plots give the numbers of runs at a given
ple with X given by (2.11) andv given by combination ofS andF.

(2.12).
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111 -1 -1 1
111 -1 -1 1
111 1 -1 -1
111 1 -1 -1
111 -1 1 -1
111 -1 1 -1
111 1 11
111 1 11
10 2 0 —v2 0
10 2 0 V2 0
1 20: =2 0 0
1 20 V2.0 0
100 0 0 0
100 0 0 0
100 0 0 0
100 0 0 0
100 0 0 0
100 0 0 0
100 0 0 0
100 0 0 0

FIGURE 2-2b: The model matriX = (X; : X3) associated with the lathe data.

Example 2.2: Delozier’s lathe data

For our second example we consider the lathe data of M. R. Delozier as discussed by
Weisberg [60, pp. 166—167 (1985)]:

The data [in Table 2-2a] are the results of an experiment to characterize the
performance of a cutting-tool material in cutting steel on a lathe. A com-
pletely randomized experiment in 20 runs was used, with two factors, cutting
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speed (in feet per minute) and feed rate (in thousandths of an inch per revolu-
tion). For convenience, the levels of the two factors are coded and centered to
give predictorsS=(speed-900)/300 and F=(feed rate-13) /6. The response
wasY = tool life (in minutes). Figure 2-2a is a scatter ploto¥s. F; the
numbers on the plot correspond to the number of runs at each of the exper-
imental settings. This layout of points is called@ntral composite design

and is useful when the fitting of polynomials, and possibly interactions, is
anticipated.

Weisberg [60, p. 167, eq. (7.9)] suggests fitting the full second-order modehird
F tolog(Y) which we set up as

log(Y) = By + B1S* + BoF? + B35 + BuF + 35S x F + ¢ (2.19)

so that the associat@ x 6 model matrixX = (X; : X5), with X; andX; both20 x 3,
is orthogonally partitioned, i.eX| X, = 0. The matrixX is shown in Figure 2-2b and
we find
20 12 12 0 0
12 16 8 0 O
XX — (X’1X1 X’1X2> |12 8 16 0 O
X5X; X4X, 0O 0 0 12 0
0O 0 0 0 12
0 0 0 0 O

and soX X, = 0 andX in Figure 2-2b is orthogonally partitioned.

We now suppose that the 20 observations have been made sequentially in time with
serial correlation coefficient and hence that the covariance matrix

(2.20)

Y

oo OO o oo

1 p p* ... p¥
p 1 p ... pt®
1 2 17 /
V:1 | P p 1 ... p =A’A, (2.21)
- P : : . :
19 pis pl7 1
where
A Ap Ap? Apt?
0o 1 »p pte
A=|0 0 1 ... p¥ , (2.22)
0 0 O 1

with A = 1/4/1 — p?, see, e.g., Ward [56, pp. 25-26 (1973)]. It follows at once that the
determinant
1

1—p?

V] = A2 = (2.23)
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and the inverse

1 —p 0 0 0
—p 1+p* —p 0 0
0 - 14+p2 —p ... ... 0

N A (2.24)
0 0 0 —p 1+p* —p
0 0 0 0 —p 1

see, e.g., Chipman [15, p. 4 (1965)].

We plot the subset Watson efficiencie®(3,) andeff(3,) (vertical axis) against the
serial correlation coefficient(horizontal axis) in Figure 2-2c and observe thatfor8 <
p < +0.8, the subset Watson efficiencies follow a parabola with maximum efficiency
equal tol at p = 0 and minimum efficienciesff(3,) ~ 0.329 andeff(3,) ~ 0.099 and
eff(3,) ~ 0.502 at p = —0.8 andeff(3,) ~ 0.159 atp = +0.8.

efficiency efficiency

08+

06

04+

024

T T T 7 T T T T T T T T T T T T
-0.8-0.6-0.4-02 02 04 06 08 g -0.8-0.6-04-02 0 02 04 06 08 tho

FIGURE 2-2¢: Subset Watson efficiencie(3,) (left panel) anc:ff(3,) (right panel) for the
lathe data plotted vs. the serial correlation coefficjent

efficiency gamma rl3
12
Nll
, 7
fog
208-06-04-02 002 04 06 08 20.8-06 04 -02 987 04 06 08
rho rho

FIGURE 2-2d: Total Watson efficiencies for the lathe da&ﬁ(ﬁm) (left panel) and the efficiency
factorization multipliery, 2 (right panel) plotted against the serial correlation coefficient
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In Figure 2-2d, we plot (in the left panel) the total Watson efficiestty3,,) and (in
the right panel) the efficiency factorization multiplier, both against the serial correla-
tion coefficientp; the efficiency is on the vertical axis apdn the horizontal axis. From
the left panel of Figure 2-2d, we see that the total Watson efficiency follows a parabola
with maximum efficiency equal thatp = 0 and minimum efficienciesff(3,,) ~ 0.053
atp = —0.8 andeff(3,,) ~ 0.058 atp = +0.8.

From the right panel of Figure 2-2d, we see that the efficiency factorization multiplier
~v12 > 1. For positivep the efficiency factorization multipliet;, is very close tol and
only equal to 1.004 gt = +0.8. For negativep the efficiency factorization multipliey,,
behaves rather differently with a maximum of approximately95 at p = —0.893. Itis
interesting to note, however, that, = 1 (exactly) if and only ifp = 0.

Example 2.3: Worsley’'s fMRI data

For our third example we consider a set of fMRI (functional Magnetic Resonance Imag-
ing) data kindly provided by Keith Worsley. As observed by Worgewl. [62]:

The combined effect of different stimuli types on data in scandenoted
by £ different responses;y, . . ., x;; is often assumed to be additive but with
different multiplicative coefficientg, . .., 8, that vary from voxel to voxel.
The combined fMRI response is modeled as the linear model4273 +

c At g Gy

Some voxels in fMRI time series data show considerable drift over time.
Drift can be either linear, or a more general slow variation. If drift is not
removed, then it can either be confounded with the fMRI response, partic-
ularly if the stimuli vary slowly over time, or it can add to the estimate of
the random noise. The first causes bias in estimates of the effect of the stim-
uli, the second causes bias in the estimate of the error of the estimated ef-
fect. Drift can be removed either by high-pass filtering or by introducing
low frequency drift terms, such as cosines, polynomials, or splines, into the
linear model ... we use a polynomial drift of ordgr To do this we add

extra “responsesty;, . . ., w;,, at time to the linear model. For example,
a polynomial drift of ordel; can be removed by adding to the linear model
w;; = tfl;j =1,....,m = ¢+ 1. Finally a random erroe; is added to

obtain the observed fMRI dat&;, at time index:

Yi = Wi+ Wi Oy + Eﬁﬁﬁ1 + - F Tk +e (2.25)

-~

drift fMRI response

The simplest model of the temporal correlation structure is the first order autoregres-
sive model [13], in which the scans are equally spaced in time and we suppose that the
error from the previous scan is combined with fresh noise to produce the error for the
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current scane; = pe;_1 + &1, Where|p| < 1 and§;; is a sequence of independent and
identically distributed normal random variables with m&aand standard deviatios,
i.e., &1 ~ N(0,0%) (known as “white noise”). The resulting autocorrelation at aig
corr(e;, gip) = pll.
For our data set we have= 2 stimuli in the fMRI response and we fit a cubic trend
to the drift, and son = 4 andg = 3. There aren = 117 observations in the data set
of which the first10 are given in Table 2-3a below; for alll7 observations, see Chu
[16, pp. 14-16]. The first» = 4 columns in Tables 2-3a refer to the drift and the last
k = 2 to the fMRI response. In our notation the model maiXixs 117 x 6, with the
elements of the first column all equal 19 the elements in columf represent a linear
trend, the elements in coluntha quadratic trend, and the elements in colutrancubic
trend. Columms of X represents a hot stimulus, whereas coluimepresents a warm
stimulus. Columng—4 are considered to represent nuisance variables, the drift; columns
5 and 6 are of real interest, the fMRI response. We partitln= (X; : Xj), with
X, : 117 x 4 andX5 : 117 x 2. To orthogonally partitiorX, we replaceX, with M; X,
whereM; =T — X (X X;)'X].
For the covariance matri¥, we use the first-order autocorrelation struct{pé 7'}
as in (2.21) in Example 2-2 above, but with the covariance matrix hoivx 117. See
also (3.12) below.

We tabulate the efficiency factorization multipliervs. the serial correlation coeffi-
cientp in Table 2-3b below and note that> 1 for all p < 0. We find the behaviour of
~ for p > 0 to be curious, see Figure 2-3 where we plats. p; from Table 2-3b we see
thaty < 1 for approximately0.02 < p < 0.75, with a minimum value of approximately
~v = 0.9989476 at p = 0.61. We find also thaty = 1 whenp = 0 and wherp ~ 0.751.

TABLE 2-3a: First 10 observations of the fMRI data
of Worsleyet al. [62].

PR RRPRPRPRRRLRPR

-1
-0.982759
-0.965517
-0.948276
-0.931034
-0.913793
-0.896552
-0.87931
-0.862069
-0.844828

1

0.965815
0.932224
0.899227
0.866825
0.835018
0.803805
0.773187
0.743163
0.713734

-1

-0.949163
-0.900078
-0.852715
-0.807044
-0.763034
-0.720653
-0.679871
-0.640658
-0.602982

0.000590719
0.348491
1.26704
1.50206
0.926492
-0.176833
-0.481519
-0.271114
-0.0896224
-0.0210606

O OO oo

0
0.000590719
0.348491
1.26704
1.50206
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efficiency factorization multipliety (second column) for the fMRI data of Worsleyal. [62].

TABLE 2-3b: Serial correlation coefficiept(first column) and the

-0.99
-0.98
-0.97
-0.96
-0.95
-0.94
-0.93
-0.92
-0.91
-0.90
-0.89
-0.88
-0.87
-0.86
-0.85
-0.84
-0.83
-0.82
-0.81
-0.80
-0.79
-0.78
-0.77
-0.76
-0.75
-0.74
-0.73
-0.72
-0.71
-0.70
-0.69
-0.68
-0.67
-0.66
-0.65
-0.64
-0.63
-0.62
-0.61
-0.60
-0.59
-0.58
-0.57
-0.56
-0.55
-0.54
-0.53
-0.52
-0.51
-0.50

3.7036775
1.9251338
1.4808892
1.3041294
1.2146460
1.1619827
1.1277016
1.1037646
1.0861861
1.0727861
1.0622767
1.0538489
1.0469687
1.0412691
1.0364892
1.0324387
1.0289751
1.0259899
1.0233990
1.0211363
1.0191489
1.0173947
1.0158389
1.0144534
1.0132146
1.0121032
1.0111027
1.0101993
1.0093814
1.0086388
1.0079631
1.0073468
1.0067835
1.0062678
1.0057947
1.0053600
1.0049600
1.0045914
1.0042512
1.0039370
1.0036464
1.0033774
1.0031281
1.0028969
1.0026823
1.0024830
1.0022979
1.0021257
1.0019656
1.0018166

-0.49
-0.48
-0.47
-0.46
-0.45
-0.44
-0.43
-0.42
-0.41
-0.40
-0.39
-0.38
-0.37
-0.36
-0.35
-0.34
-0.33
-0.32
-0.31
-0.30
-0.29
-0.28
-0.27
-0.26
-0.25
-0.24
-0.23
-0.22
-0.21
-0.20
-0.19
-0.18
-0.17
-0.16
-0.15
-0.14
-0.13
-0.12
-0.11
-0.10
-0.09
-0.08
-0.07
-0.06
-0.05
-0.04
-0.03
-0.02
-0.01
0.00

1.0016779
1.0015487
1.0014285
1.0013166
1.0012123
1.0011152
1.0010249
1.0009407
1.0008624
1.0007896
1.0007219
1.0006590
1.0006005
1.0005463
1.0004960
1.0004494
1.0004062
1.0003664
1.0003295
1.0002956
1.0002643
1.0002356
1.0002093
1.0001852
1.0001632
1.0001432
1.0001250
1.0001085
1.0000936
1.0000803
1.0000683
1.0000577
1.0000483
1.0000400
1.0000327
1.0000264
1.0000210
1.0000165
1.0000126
1.0000094
1.0000068
1.0000048
1.0000032
1.0000020
1.0000011
1.0000006
1.0000002
1.0000001
1.0000000
1.0000000

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.20
0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28
0.29
0.30
0.31
0.32
0.33
0.34
0.35
0.36
0.37
0.38
0.39
0.40
0.41
0.42
0.43
0.44
0.45
0.46
0.47
0.48
0.49
0.50

1.0000000
0.9999999
0.9999998
0.9999994
0.9999989
0.9999981
0.9999970
0.9999955
0.9999937
0.9999913
0.9999885
0.9999851
0.9999812
0.9999766
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FIGURE 2-3a: A plot of the efficiency factorization multiplier(vertical axis) vs. the
serial correlation coefficient (horizontal axis).

3 Literature review

Consider the linear (or Gaul3—Markov) model
E(y)=XB8;  D(y)=0V, (3.1)

whereX is then x p model (or design) matrix an¥l is then x n dispersion matrix. The
p x 1 vector3 and the variance? are unknown and to be estimated based on a single
realization ofy. The matriceX andV are assumed to be known.

When the dispersion matriX is positive definite, then the so-called “estimating equa-
tions”

X'V IXB=XVly (3.2)

were introduced in 1935 by Aitken [1], and are known asAlitken equationssee, e.g.,
Hinkelmann [31]. WherX has full column rank < n, thenX'V~!X is positive definite
(invertible) and (3.2) has the unique solution

B=(XV'X)'X'Vly, (3.3)
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say. The estimatq8 is known as the generalized least squares (GLS) estimatrssfe,
e.g., Seber & Lee [51, p. 67 (2003)], and the estimator

B =(X'X)"'X'y (3.4)

is the well-known ordinary least squares (OLS) estimatgs.of

Anderson [7, (1948)] seems to have been first to consider conditions for the equality
of the ordinary least squares estimator and the generalized least squares estimator, and his
contributions are discussed in some detail by Baksalary, Puntanen & Styan [10, (1990)];
see also Rao [50, (1967)], Zyskind [64, (1967)], and the survey by Puntanen & Styan [47,
(1989)].

As observed inThe Oxford Dictionary of Statistical Ternjgl, p. 127 (2003)], see
also David [20, (1995)],

The concept of efficiency in statistical estimation is due to Fisher [26, (1922)]
and is an attempt to measure objectively the relative merits of several possible
estimators. The criterion adopted by Fisher was that of variance, an estimator
being regarded as more ‘efficient’ than another if it has smaller variance.

The results of Fisher [26] concerned the estimation of a scalar-valued parameter. Wilks
[61, p. 476 (1932)] introduced the notion of generalized variance as the determinant of
the dispersion matrix and was the first, we believe, to define [61, p. 478 (1932)] the
ratio of generalized variances as a measure of efficiency in the estimation of a vector-
valued parameter. It seems that Aitken [3, (1948)] was the first to consider the generalized
variance of the ordinary least squares estimator, and that Watson, in his Ph.D. thesis [57,
p. 66 (1951)], introduced the efficiengyof the ordinary least squares estimator as the
ratio of generalized variances and showed that

D(3 X'X |2
o= POI _ / | I/ _— (3.5)
ID(B)|  XVX]-[X'ViX]
where| - | denotes determinant. We calin (3.5) theWatson efficiency
It is easy to show that the Watson efficiency
¢ <1, (3.6)

with equality if and only if3 = 3 with probability 1, see also (1.17) above. A lower
bound for the Watson efficiency (3.5) is provided by the Bloomfield-Watson—Knott in-
equality

1X'X|? T AN

_ 3.7
= XVX] - XV it i) (3.7)

=1

wherem = min(p, n — p) and\; > --- > A, are the, necessarily positive, eigenvalues
of V.
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The Bloomfield—Watson—Knott inequality (3.7) was originally conjectured by James
Durbin, see Watson [57, p. 69 (1951)] and watson [58, p. 331 (1955)], but was first estab-
lished form = min(p,n — p) > 2 only much later by Bloomfield & Watson [12, (1975)]
and Knott [38, (1975)]; see also Alpargu, Drury & Styan [4], Ghual. [17, Lemma 4.1],
Drury et al. [22], Khatri & Rao [36, 37], Yang [63],

Whenp = 1, the Bloomfield—Watson—Knott inequality (3.7) reduces, with the ma-
trix X replaced by the vectot, to the well-known Kantorovich (or Frucht—Kantorovich)
inequality:

(x'x)? S 4NN\,
X'Vx - x'V-Ix = (A +\,)?%

which was first established by Frucht [28, (1943)] and Kantorovich [35, (1948)]. Watson
[57, Appendix 1, pp. 138-139 (1951)] and [58, Appendix, pp. 340-341 (1955)] used an
inequality due to John William Scott Cassels to prove (3.8) and Watson, Alpargu & Styan
[59] showed that the Cassels and Kantorovich inequalities were equivalent to each other
and to four other named inequalities. See also Alpargu & Styan [5, 6], @t [22].

Hannan [30, p. 422 (1970)] considered the efficiency of the OLSE of a particular linear
functionp’3, wherep is a givenp x 1 column vector, and showed that

(3.8)

var(p’B) S AN\,
var(p’B) (A AP
see also Golub [29], Magness & McGuire [41], Sengupta & Jammalamadaka [52, §8.1.2,
pp. 315-321], Wang & Chow [55, 85.6.2, pp. 211-215].
Bartmann & Bloomfield [11, (1981)] showed that the Watson efficiency

(3.9)

IDBers)| X' X]*

= —= = -
D(Bors)l  XVX[-[XVX]

=[I- (X'VX)"'X'VX(X'VX)"'X'VX| = [[(1- ). (3.10)
=1
whereX is ann x (n — p) matrix such thalX’X = 0 andC(X) = N(X), whereC(-)
denotes column space (or range) avid) denotes null (column) space.
In (3.10) the upper limitn. = min(p, n — p) and thep? are the eigenvalues of

(X'VX) I X'VX(X'VX)'X'VX (3.11)

and so thep; may be taken as the canonical correlations between the fitted values from
OLS, i.e., the elements of the vectiB,, s, and the residuals from OLS, i.e., the ele-
ments of the vectoy — XBOLS; see also Puntanen [45]. It follows at once from (3.10)
that the Watson efficiency = 1 if and only if X’VX = 0, as shown by Rao [50] and
Zyskind [64].

As observed by Durbin & Watson [23, (1950)],
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A great deal of use has undoubtedly been made of least squares regression
methods in circumstances in which they are known to be inapplicable. In
particular, they have often been employed for the analysis of time series and
similar data in which successive observations are serially correlated.

As noted in our examples in Section 2 above, the Watson efficientyy be used to
measure the efficiency of ordinary least squares in such situations with the dispersion
matrix

1 p p2 pn—2 pn—l

n—3 n—2
v (3.12)

pn—l pn—2 pn—3 o 0 1

wherep is the serial correlation coefficient. Let= {r;} denote the vector of residsuals
from ordinary least squares. Then the well-known Durbin—Watson test is based on the
statistic

Z?:Q(Ti - Ti—l)Q
Z?:l T?

As noted by Seber & Lee [51, p. 293], the Durbin—Watson test is “perhaps the most
popular test for serial correlation” and “Durbin & Watson [25, (1971)] showed that the
critical regionD < d. for testing the null hypothesi¥, : p = 0 against the one-sided
alternativeH; : p > 0 has certain optimal properties; for example it is the locally most
powerful invariant critrical region.”

When'H, is true, the null distribution o) depends on the model matrk, so that
d. has to be specially computed for eaXh Durbin & Watson [23, (1950)], however,
obtained bound®; and Dy, say, so thatD;, < D < Dy, and where the null distribu-
tions of D;, and Dy do not depend oiX. Significance points for this “Durbin—Watson
bounds test” are given by Durbin & Watson [24, (1951)] and by Koerts & Abrahamse [39,
pp. 176-178 (1969)].

The Watson efficiency is not the only measure of efficiency that has been proposed.
Bloomfield & Watson [12, (1975)], see also Bartmann & Bloomfield [11, (1981)], intro-
duced the measure of efficiency

D =

(3.13)

Y =3 tr(HV — VHY(HV — VH)
= trHV? —tr(HV)? = tr HVMV = tr HVMVH, (3.14)

whereH = X(X'X)~'X andtr denotes trace. We will call the Bloomfield—Watson
efficiency The matrixH is often called théat matrix see, e.g., [40].

Bloomfield & Watson [12, (1975)] showed that

1 & )
¢ =trHVMVH < - ;(Ai — Anis)?, (3.15)
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wherem = min(p,n — p) and; > --- > )\, are the, necessarily positive, eigenvalues of
the covariance matri¥. The inequality (3.15) withp = 1 was established by Styan [53,
(1983)] and was calleBtyan’s Inequalityy Jia [33, (1996)] and Jiang [34, (1998)]. We
will call (3.15) theBloomfield—Watson trace inequalitWe note that) = 0 if and only if
HVM = 0 if and only if the Watson efficiency = 1.

Our original motivation in this research was the paper [14, (1969)] by Canner, who
studied the special case of simple linear regression with model matrix

1 -1
X=11 0 (3.16)
1 1
and covariance matrix
1 0 0 1 r r 1 00 1 e r
V=10 ¢ 0 r 1 r 0 c 0)=[er & er]. (3.17)
0 0 1 r or 1 0 0 1 r o 1

Canner [14] observed that with the model matkixand covariance matri¥ as given

by (3.16) and (3.17), respectively, the generalized least squares (GLS) regression line lies
completely outside the data set with probabilltyprovidedc andr fall into a certain
region, see Chu [16, ch. |, 81.4, Fig. 1.2]. We observe that with the model n¥trix

and covariance matri¥ as given by (3.16) and (3.17), respectively, the generalized least
squares (GLS) and ordinary least squares (OLS) regression lines are always parallel with
probability 1 for all ¢,  such that the covariance matikis positive definite, and so then
there is a reduction of the Watson efficiency of type 2, see (1.20) in our 81 above. This
result is extended in Chu [16, ch. I, Th. 1] following results of Puntanen [46, (1996)].
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