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We consider partitioned linear models where the model matrixX = (X1 : X2) has
full column rank, and concentrate on the special case whereX′

1X2 = 0 when we say
that the model isorthogonally partitioned.We assume that the underlying covariance
matrix is positive definite and introduce theefficiency factorization multiplierwhich
relates the total Watson efficiency of ordinary least squares to the product of the
two subset Watson efficiencies. We illustrate our findings with several examples and
present a literature review.

1 Introduction and mise-en-scène

In this paper we consider the general partitioned linear (or Gauß–Markov) model

y = X1β1 + X2β2 + ε, (1.1)

or in another notation,

M12 := {y, X12β12, V} := {y, X1β1 + X2β2, V}, (1.2)
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with

E(y) = X12β12, E(ε) = 0, cov(y) = cov(ε) = V, (1.3)

whereE(·) denotes expectation (or expected value) andcov(·) denotes the covariance (or
dispersion) matrix. The vectory is ann × 1 observable random vector,ε is ann × 1
unobservable random error vector, and

β12 =

(
β1

β2

)
(1.4)

is ap12 × 1 vector of unknown parameters withp12 = p1 + p2 = p, with β1 (p1 × 1) and
β2 (p2 × 1). The model (or design) matrixX12 is n × p12 and is partitioned columnwise
as

X12 = (X1 : X2) , (1.5)

with p12 = p1 + p2 ,X1 (n × p1) andX2 (n × p2). Both the model matrixX12 and the
covariance matrixV are known. Usually the model matrixX12 is denoted by justX and
the number of its columns by justp.

When the model matrixX12 has full column rank and the covariance matrixV is pos-
itive definite, then as is well known, the vectorβ12 is estimable, and theOLSE (ordinary
least squares estimator) and theBLUE (best linear unbiased estimator or Aitken estimator)
of β12 under the full modelM12 are, respectively,

OLSE(β12 |M12) = β̂12 =

(
β̂1

β̂2

)
= (X′

12X12)
−1X′

12y (1.6a)

BLUE(β12 |M12) = β̃12 =

(
β̃1

β̃2

)
= (X′

12V
−1X12)

−1X′
12V

−1y , (1.6b)

with (·)′ denoting transpose. The corresponding covariance matrices are, respectively,

cov(β̂12 |M12) = (X′
12X12)

−1X′
12VX12(X

′
12X12)

−1 (1.7a)

cov(β̃12 |M12) = (X′
12V

−1X12)
−1, (1.7b)

and hence from the Gauß–Markov theorem [43], we have the Löwner ordering, see, e.g.,
Wang & Chow [55, p. 207],

cov(β̂12 |M12) ≥L cov(β̃12 |M12) , (1.8)

or equivalently, the matrix difference between the two matrices in (1.8) is nonnegative
definite.

There is no unique way to measure how “bad” theOLSEcould be with respect to the
BLUE. Almost certainly the most frequently used measure is theWatson efficiencywhich
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is defined as the ratio of the generalized variances (determinants of the corresponding
covariance matrices) in (1.7a) and (1.7b):

eff(β̂12 | M12) =
|cov(β̃12 | M12)|
|cov(β̂12 | M12)|

=
|X′

12X12|2

|X′
12VX12| · |X′

12V
−1X12|

, (1.9)

where| · | denotes determinant. We calleff(β̂12 | M12) as defined by (1.9) thetotal
Watson efficiencyof theOLSEβ̂12 in the modelM12.

We define thesubset Watson efficiencyof theOLSEβ̂i (i = 1, 2) in the modelM12

eff(β̂1 | M12) =
|cov(β̃1 | M12)|
|cov(β̂1 | M12)|

, eff(β̂2 | M12) =
|cov(β̃2 | M12)|
|cov(β̂2 | M12)|

(1.10)

and theefficiency factorization multiplierγ12 by

γ12 =
eff(β̂12 | M12)

eff(β̂1 | M12) · eff(β̂2 | M12)
, (1.11)

or equivalently by

eff(β̂12 | M12) = γ12 · eff(β̂1 | M12) · eff(β̂2 | M12). (1.12)

We are interested in characterizingγ12 > 1, γ12 = 1, or γ12 < 1. Whenγ12 = 1, i.e.,

eff(β̂12 | M12) = eff(β̂1 | M12) · eff(β̂2 | M12) , (1.13)

then we say that the Watson efficiencyfactorizes. Since the Watson efficiency is nonneg-
ative and can never exceed1, it follows at once from (1.13) that

eff(β̂12 | M12) = 1 & γ12 = 1 ⇒ eff(β̂1 | M12) = 1 & eff(β̂2 | M12) = 1.
(1.14)

But we may strengthen the result (1.14) to

eff(β̂12 | M12) = 1 ⇒ γ12 = 1 & eff(β̂1 | M12) = 1 & eff(β̂2 | M12) = 1.
(1.15)

To prove (1.15), we note that from (1.8) it follows at once that

| cov(β̂12 | M12)| ≥ | cov(β̃12 | M12)| (1.16)

with equality if and only if the covariance matrices in (1.16) are equal, see, e.g., Marshall
& Olkin [42, (1979)], and then in the modelM12

β̂12 = β̃12 (1.17)



168 K. L. Chuet al.

with probability1. This result together with the definition (1.11) establishes (1.15).

When

eff(β̂12 | M12) = eff(β̂1 | M12) ⇔ γ12 · eff(β̂2 | M12) = 1 , (1.18)

or when

eff(β̂12 | M12) = eff(β̂2 | M12) ⇔ γ12 · eff(β̂1 | M12) = 1 , (1.19)

then we say that there is areduction of the Watson efficiency of type 1. When

eff(β̂12 | M12) = γ12 · eff(β̂1 | M12) ⇔ eff(β̂2 | M12) = 1 , (1.20)

or when

eff(β̂12 | M12) = γ12 · eff(β̂2 | M12) ⇔ eff(β̂1 | M12) = 1 , (1.21)

then we say that there is areduction of the Watson efficiency of type 2.

We illustrate these formulas with several examples and review the relevant literature.
For further related results see Chu [16] and Chu, Isotalo, Puntanen & Styan [17, 18, 19].

2 Examples

Example 2.1: A simple example withn = 4 and p = 2

For our first example let us consider the model matrix

X12 = (X1 : X2) =


1 : −1
1 : −2
1 : +2
1 : +1

 (2.1)

and the covariance matrix

V =


3 1 1 3ρ
1 3 1 1
1 1 3 1
3ρ 1 1 3

 . (2.2)

Then the matrixV in (2.2) is positive definite whenever

−2

3
< ρ < +1. (2.3)
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To prove (2.3) we may use Haynsworth’s inertia additivity formula [48, §0.10] which
shows that the matrixV in (2.2) is positive definite provided the Schur complement of the
top left3× 3 submatrix

3−
(
3ρ 1 1

) 3 1 1
1 3 1
1 1 3

−1 3ρ
1
1

 = 3−
(
3ρ 1 1

) 1

10

 4 −1 −1
−1 4 −1
−1 −1 4

 3ρ
1
1


=

6

5
(1− ρ)(2 + 3ρ) > 0, (2.4)

which establishes (2.3).

With the model matrixX12 as in (2.1), and with the covariance matrixV as in (2.2)
and positive definite, we obtain the variances

var(β̃1) =
2(2 + 3ρ)

3(1 + ρ)
and var(β̂1) =

11 + 3ρ

8
(2.5a)

var(β̃2) =
3(1− ρ)

2(7− 6ρ)
and var(β̂2) =

11− 3ρ

50
. (2.5b)

The covariancescov(β̃1, β̃2) = cov(β̂1, β̂2) = 0, and so the generalized variances are the
products of the corresponding variances:

| cov(β̃12)| =
(2 + 3ρ)(1− ρ)

(1 + ρ)(7− 6ρ)
and | cov(β̂12)| =

(11 + 3ρ)(11− 3ρ)

400
. (2.6)

To ease the notation, we write here

var(β̃i) = var(β̃i | M12) , var(β̂i) = var(β̂i | M12) , i = 1, 2, (2.7a)

cov(β̃1, β̃2) = cov(β̃1, β̃2 | M12) , cov(β̂1, β̂2) = cov(β̂1, β̂2 | M12) (2.7b)

cov(β̃12) = cov(β̃12 | M12) , cov(β̂12) = cov(β̂12 | M12) . (2.7c)

The subset Watson efficiencies are

eff(β̂1) =
16(2 + 3ρ)

3(1 + ρ)(11 + 3ρ)
and eff(β̂2) =

75(1− ρ)

(7− 6ρ)(11− 3ρ)
(2.8)

and the total Watson efficiency is

eff(β̂12) =
400(2 + 3ρ)(1− ρ)

(1 + ρ)(11 + 3ρ)(7− 6ρ)(11− 3ρ)
= eff(β̂1) · eff(β̂2) , (2.9)

the product of the two subset Watson efficiencies in (2.8), and so in this example the
efficiency factorization multiplierγ12 = 1 and the total Watson efficiency factorizes for
all ρ such that the matrixV in (2.2) is positive definite.
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It is interesting to note that in this example withγ12 = 1, we have

eff(β̂12) = 1 ⇔ eff(β̂1) = 1 ⇔ eff(β̂2) = 1 ⇔ ρ =
1

3
(2.10)

and so there is then (withρ = 1/3) a reduction of the total Watson efficiency here of both
type 1 and type 2, see (1.18)–(1.21) above.

Let us now consider the model matrix

X12 = (X1 : X2) =


1 : −1
1 : +1
1 : +2
1 : −2

 , (2.11)

which is the matrixX in (2.1) with rows2 and4 switched, and the covariance matrix

V =


3 1 1 3ρ
1 3 1 1
1 1 3 1
3ρ 1 1 3

 , (2.12)

which is the same as in (2.2) above. We recall thatV in (2.12) is positive definite provided
that−2/3 < ρ < 1, see (2.3) above.

We obtain the variances

var(β̃1) =
317− 198ρ− 99ρ2

3(77− 70ρ− 3ρ2)
and var(β̂1) =

11 + 3ρ

8
(2.13a)

var(β̃2) =
12(1− ρ2)

77− 70ρ− 3ρ2
and var(β̂2) =

4 + 3ρ

25
, (2.13b)

and hence the subset Watson efficiencies are

eff(β̂1) =
8(317− 198ρ− 99ρ2)

3(77− 70ρ− 3ρ2)(11 + 3ρ)
and eff(β̂2) =

300(1− ρ2)

(77− 70ρ− 3ρ2)(4 + 3ρ)
.

(2.14)

The generalized variances are

| cov(β̃12)| =
8(2 + 3ρ)(1− ρ)

77− 70ρ− 3ρ2
and | cov(β̂12)| =

343 + 414ρ− 9ρ2

1600
(2.15)

and so the total Watson efficiency is

eff(β̂12) =
12800(3ρ+ 2)(1− ρ)

(3ρ2 + 70ρ− 77)(343 + 414ρ− 9ρ2)
. (2.16)
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The efficiency factorization multiplier

γ =
eff(β̂12)

eff(β̂1) · eff(β̂2)
=

16(2 + 3ρ)(4 + 3ρ)(11 + 3ρ)(77− 70ρ− 3ρ2)

(1 + ρ)(317− 198ρ− 99ρ2)(343 + 414ρ− 9ρ2)
, (2.17)

which seemingly does not simplify (further). We plotγ vs. ρ in Figure 2-1a and note that
γ increases monotonically withρ, and thatγ < 1 for ρ < 0. Interestingly whenρ = 0,
then

γ =
108, 416

108, 731
≈ 0.9971, (2.18)

andγ = 1 whenρ = 1/3, that is,V has intraclass correlation.

TABLE 2-2a: Coded data for an experiment with a lathe due to M. R. Delozier.

S F Y S F Y

−1 −1 54.5 −
√

2 0 20.1
−1 −1 66.0 +

√
2 0 2.9

1 −1 11.8 0 0 3.8
1 −1 14.0 0 0 2.2

−1 1 5.2 0 0 3.2
−1 1 3.0 0 0 4.0

1 1 0.8 0 0 2.8
1 1 0.5 0 0 3.2
0 −

√
2 86.5 0 0 4.0

0 +
√

2 0.4 0 0 3.5

0.97

0.98

0.99

1

1.01

–0.2 0 0.2 0.4 0.6 0.8 rho

FIGURE 2-1a: Plot of the efficiency factor-
ization multiplier γ (vertical axis) vs. the
correlationρ (horizontal axis) for the exam-
ple with X given by (2.11) andV given by
(2.12).
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FIGURE 2-2a: Scatter plot ofS vs. F for
the lathe data in Table 2-2a. Numbers in
the plots give the numbers of runs at a given
combination ofS andF .
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

1 1 1 : −1 −1 1

1 1 1 : −1 −1 1

1 1 1 : 1 −1 −1

1 1 1 : 1 −1 −1

1 1 1 : −1 1 −1

1 1 1 : −1 1 −1

1 1 1 : 1 1 1

1 1 1 : 1 1 1

1 0 2 : 0 −
√

2 0

1 0 2 : 0
√

2 0

1 2 0 : −
√

2 0 0

1 2 0 :
√

2 0 0

1 0 0 : 0 0 0

1 0 0 : 0 0 0

1 0 0 : 0 0 0

1 0 0 : 0 0 0

1 0 0 : 0 0 0

1 0 0 : 0 0 0

1 0 0 : 0 0 0

1 0 0 : 0 0 0


FIGURE 2-2b: The model matrixX = (X1 : X2) associated with the lathe data.

Example 2.2: Delozier’s lathe data

For our second example we consider the lathe data of M. R. Delozier as discussed by
Weisberg [60, pp. 166–167 (1985)]:

The data [in Table 2-2a] are the results of an experiment to characterize the
performance of a cutting-tool material in cutting steel on a lathe. A com-
pletely randomized experiment in 20 runs was used, with two factors, cutting
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speed (in feet per minute) and feed rate (in thousandths of an inch per revolu-
tion). For convenience, the levels of the two factors are coded and centered to
give predictorsS=(speed−900)/300 andF=(feed rate−13)/6. The response
wasY = tool life (in minutes). Figure 2-2a is a scatter plot ofS vs. F ; the
numbers on the plot correspond to the number of runs at each of the exper-
imental settings. This layout of points is called acentral composite design
and is useful when the fitting of polynomials, and possibly interactions, is
anticipated.

Weisberg [60, p. 167, eq. (7.9)] suggests fitting the full second-order model inS and
F to log(Y ) which we set up as

log(Y ) = β0 + β1S
2 + β2F

2 + β3S + β4F + β5S × F + ε (2.19)

so that the associated20× 6 model matrixX = (X1 : X2), with X1 andX2 both20× 3,
is orthogonally partitioned, i.e.,X′

1X2 = 0. The matrixX is shown in Figure 2-2b and
we find

X′X =

(
X′

1X1 X′
1X2

X′
2X1 X′

2X2

)
=


20 12 12 0 0 0
12 16 8 0 0 0
12 8 16 0 0 0
0 0 0 12 0 0
0 0 0 0 12 0
0 0 0 0 0 8

 , (2.20)

and soX′
1X2 = 0 andX in Figure 2-2b is orthogonally partitioned.

We now suppose that the 20 observations have been made sequentially in time with
serial correlation coefficientρ and hence that the covariance matrix

V =
1

1− ρ2


1 ρ ρ2 . . . ρ19

ρ 1 ρ . . . ρ18

ρ2 ρ 1 . . . ρ17

...
...

...
...

...
ρ19 ρ18 ρ17 . . . 1

 = A′A, (2.21)

where

A =


λ λρ λρ2 . . . λρ19

0 1 ρ . . . ρ18

0 0 1 . . . ρ17

...
...

...
...

...
0 0 0 . . . 1

 , (2.22)

with λ = 1/
√

1− ρ2, see, e.g., Ward [56, pp. 25–26 (1973)]. It follows at once that the
determinant

|V| = λ2 =
1

1− ρ2
(2.23)
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and the inverse

V−1 =



1 −ρ 0 0 . . . . . . 0
−ρ 1 + ρ2 −ρ 0 . . . . . . 0
0 −ρ 1 + ρ2 −ρ . . . . . . 0
...

...
...

...
...

...
...

0 0 0 . . . −ρ 1 + ρ2 −ρ
0 0 0 . . . 0 −ρ 1


, (2.24)

see, e.g., Chipman [15, p. 4 (1965)].

We plot the subset Watson efficiencieseff(β̂1) andeff(β̂2) (vertical axis) against the
serial correlation coefficientρ (horizontal axis) in Figure 2-2c and observe that for−0.8 ≤
ρ ≤ +0.8, the subset Watson efficiencies follow a parabola with maximum efficiency
equal to1 at ρ = 0 and minimum efficiencieseff(β̂1) ≈ 0.329 andeff(β̂2) ≈ 0.099 and
eff(β̂1) ≈ 0.502 atρ = −0.8 andeff(β̂2) ≈ 0.159 atρ = +0.8.

0

0.2

0.4

0.6

0.8

1
efficiency

–0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 rho
0

0.2

0.4

0.6

0.8

1
efficiency

–0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 rho

FIGURE 2-2c: Subset Watson efficiencieseff(β̂1) (left panel) andeff(β̂2) (right panel) for the
lathe data plotted vs. the serial correlation coefficientρ.
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0.9

1

1.1

1.2

1.3gamma

–0.8 –0.6 –0.4 –0.2 0.4 0.6 0.8 rho

FIGURE 2-2d: Total Watson efficiencies for the lathe data:eff(β̂12) (left panel) and the efficiency
factorization multiplierγ12 (right panel) plotted against the serial correlation coefficientρ.
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In Figure 2-2d, we plot (in the left panel) the total Watson efficiencyeff(β̂12) and (in
the right panel) the efficiency factorization multiplierγ12 both against the serial correla-
tion coefficientρ; the efficiency is on the vertical axis andρ on the horizontal axis. From
the left panel of Figure 2-2d, we see that the total Watson efficiency follows a parabola
with maximum efficiency equal to1 atρ = 0 and minimum efficiencieseff(β̂12) ≈ 0.053
atρ = −0.8 andeff(β̂12) ≈ 0.058 atρ = +0.8.

From the right panel of Figure 2-2d, we see that the efficiency factorization multiplier
γ12 ≥ 1. For positiveρ the efficiency factorization multiplierγ12 is very close to1 and
only equal to 1.004 atρ = +0.8. For negativeρ the efficiency factorization multiplierγ12

behaves rather differently with a maximum of approximately1.195 at ρ = −0.893. It is
interesting to note, however, thatγ12 = 1 (exactly) if and only ifρ = 0.

Example 2.3: Worsley’s fMRI data

For our third example we consider a set of fMRI (functional Magnetic Resonance Imag-
ing) data kindly provided by Keith Worsley. As observed by Worsleyet al. [62]:

The combined effect ofk different stimuli types on data in scani, denoted
by k different responsesxi1, . . . , xik is often assumed to be additive but with
different multiplicative coefficientsβ1, . . . , βk that vary from voxel to voxel.
The combined fMRI response is modeled as the linear model [27]xi1β1 +
· · ·+ xikβk.

Some voxels in fMRI time series data show considerable drift over time.
Drift can be either linear, or a more general slow variation. If drift is not
removed, then it can either be confounded with the fMRI response, partic-
ularly if the stimuli vary slowly over time, or it can add to the estimate of
the random noise. The first causes bias in estimates of the effect of the stim-
uli, the second causes bias in the estimate of the error of the estimated ef-
fect. Drift can be removed either by high-pass filtering or by introducing
low frequency drift terms, such as cosines, polynomials, or splines, into the
linear model ... we use a polynomial drift of orderq. To do this we add
extra “responses”wi1, . . . , wim at time i to the linear model. For example,
a polynomial drift of orderq can be removed by adding to the linear model
wij = tj−1

i ; j = 1, . . . ,m = q + 1. Finally a random errorεi is added to
obtain the observed fMRI data,Yi, at time indexi:

Yi =wi1α1 + · · ·+ wimαm︸ ︷︷ ︸ + xi1β1 + · · ·+ xikβk︸ ︷︷ ︸ + εi (2.25)

drift fMRI response

The simplest model of the temporal correlation structure is the first order autoregres-
sive model [13], in which the scans are equally spaced in time and we suppose that the
error from the previous scan is combined with fresh noise to produce the error for the
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current scan:εi = ρεi−1 + ξi1, where|ρ| < 1 andξi1 is a sequence of independent and
identically distributed normal random variables with mean0 and standard deviationσ1,
i.e., ξi1 ∼ N(0, σ2

1) (known as “white noise”). The resulting autocorrelation at lagh is
corr(εi, εi−h) = ρ|h |.

For our data set we havek = 2 stimuli in the fMRI response and we fit a cubic trend
to the drift, and som = 4 andq = 3. There aren = 117 observations in the data set
of which the first10 are given in Table 2-3a below; for all117 observations, see Chu
[16, pp. 14–16]. The firstm = 4 columns in Tables 2-3a refer to the drift and the last
k = 2 to the fMRI response. In our notation the model matrixX is 117 × 6, with the
elements of the first column all equal to1; the elements in column2 represent a linear
trend, the elements in column3 a quadratic trend, and the elements in column4 a cubic
trend. Column5 of X represents a hot stimulus, whereas column6 represents a warm
stimulus. Columns1–4 are considered to represent nuisance variables, the drift; columns
5 and 6 are of real interest, the fMRI response. We partitionX = (X1 : X2), with
X1 : 117× 4 andX2 : 117× 2. To orthogonally partitionX, we replaceX2 with M1X2,
whereM1 = I−X1(X

′
1X1)

−1X′
1.

For the covariance matrixV, we use the first-order autocorrelation structure{ρ|i−j|}
as in (2.21) in Example 2-2 above, but with the covariance matrix now117 × 117. See
also (3.12) below.

We tabulate the efficiency factorization multiplierγ vs. the serial correlation coeffi-
cientρ in Table 2-3b below and note thatγ > 1 for all ρ < 0. We find the behaviour of
γ for ρ > 0 to be curious, see Figure 2-3 where we plotγ vs. ρ ; from Table 2-3b we see
thatγ < 1 for approximately0.02 < ρ < 0.75, with a minimum value of approximately
γ = 0.9989476 atρ = 0.61. We find also thatγ = 1 whenρ = 0 and whenρ ≈ 0.751.

TABLE 2-3a: First 10 observations of the fMRI data
of Worsleyet al. [62].

1 -1 1 -1 0.000590719 0
1 -0.982759 0.965815 -0.949163 0.348491 0
1 -0.965517 0.932224 -0.900078 1.26704 0
1 -0.948276 0.899227 -0.852715 1.50206 0
1 -0.931034 0.866825 -0.807044 0.926492 0
1 -0.913793 0.835018 -0.763034 -0.176833 0
1 -0.896552 0.803805 -0.720653 -0.481519 0.000590719
1 -0.87931 0.773187 -0.679871 -0.271114 0.348491
1 -0.862069 0.743163 -0.640658 -0.0896224 1.26704
1 -0.844828 0.713734 -0.602982 -0.0210606 1.50206
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TABLE 2-3b: Serial correlation coefficientρ (first column) and the
efficiency factorization multiplierγ (second column) for the fMRI data of Worsleyet al. [62].

-0.99 3.7036775 -0.49 1.0016779 0.01 1.0000000 0.51 0.9991626
-0.98 1.9251338 -0.48 1.0015487 0.02 0.9999999 0.52 0.9991308
-0.97 1.4808892 -0.47 1.0014285 0.03 0.9999998 0.53 0.9991002
-0.96 1.3041294 -0.46 1.0013166 0.04 0.9999994 0.54 0.9990712
-0.95 1.2146460 -0.45 1.0012123 0.05 0.9999989 0.55 0.9990442
-0.94 1.1619827 -0.44 1.0011152 0.06 0.9999981 0.56 0.9990194
-0.93 1.1277016 -0.43 1.0010249 0.07 0.9999970 0.57 0.9989974
-0.92 1.1037646 -0.42 1.0009407 0.08 0.9999955 0.58 0.9989787
-0.91 1.0861861 -0.41 1.0008624 0.09 0.9999937 0.59 0.9989637
-0.90 1.0727861 -0.40 1.0007896 0.10 0.9999913 0.60 0.9989532
-0.89 1.0622767 -0.39 1.0007219 0.11 0.9999885 0.61 0.9989476
-0.88 1.0538489 -0.38 1.0006590 0.12 0.9999851 0.62 0.9989478
-0.87 1.0469687 -0.37 1.0006005 0.13 0.9999812 0.63 0.9989545
-0.86 1.0412691 -0.36 1.0005463 0.14 0.9999766 0.64 0.9989686
-0.85 1.0364892 -0.35 1.0004960 0.15 0.9999713 0.65 0.9989911
-0.84 1.0324387 -0.34 1.0004494 0.16 0.9999653 0.66 0.9990230
-0.83 1.0289751 -0.33 1.0004062 0.17 0.9999585 0.67 0.9990655
-0.82 1.0259899 -0.32 1.0003664 0.18 0.9999510 0.68 0.9991200
-0.81 1.0233990 -0.31 1.0003295 0.19 0.9999425 0.69 0.9991878
-0.80 1.0211363 -0.30 1.0002956 0.20 0.9999332 0.70 0.9992707
-0.79 1.0191489 -0.29 1.0002643 0.21 0.9999230 0.71 0.9993704
-0.78 1.0173947 -0.28 1.0002356 0.22 0.9999119 0.72 0.9994891
-0.77 1.0158389 -0.27 1.0002093 0.23 0.9998997 0.73 0.9996290
-0.76 1.0144534 -0.26 1.0001852 0.24 0.9998866 0.74 0.9997929
-0.75 1.0132146 -0.25 1.0001632 0.25 0.9998724 0.75 0.9999837
-0.74 1.0121032 -0.24 1.0001432 0.26 0.9998571 0.76 1.0002049
-0.73 1.0111027 -0.23 1.0001250 0.27 0.9998408 0.77 1.0004603
-0.72 1.0101993 -0.22 1.0001085 0.28 0.9998233 0.78 1.0007545
-0.71 1.0093814 -0.21 1.0000936 0.29 0.9998047 0.79 1.0010926
-0.70 1.0086388 -0.20 1.0000803 0.30 0.9997850 0.80 1.0014805
-0.69 1.0079631 -0.19 1.0000683 0.31 0.9997642 0.81 1.0019252
-0.68 1.0073468 -0.18 1.0000577 0.32 0.9997422 0.82 1.0024345
-0.67 1.0067835 -0.17 1.0000483 0.33 0.9997191 0.83 1.0030176
-0.66 1.0062678 -0.16 1.0000400 0.34 0.9996949 0.84 1.0036851
-0.65 1.0057947 -0.15 1.0000327 0.35 0.9996696 0.85 1.0044490
-0.64 1.0053600 -0.14 1.0000264 0.36 0.9996432 0.86 1.0053230
-0.63 1.0049600 -0.13 1.0000210 0.37 0.9996157 0.87 1.0063221
-0.62 1.0045914 -0.12 1.0000165 0.38 0.9995872 0.88 1.0074627
-0.61 1.0042512 -0.11 1.0000126 0.39 0.9995578 0.89 1.0087616
-0.60 1.0039370 -0.10 1.0000094 0.40 0.9995274 0.90 1.0102345
-0.59 1.0036464 -0.09 1.0000068 0.41 0.9994962 0.91 1.0118931
-0.58 1.0033774 -0.08 1.0000048 0.42 0.9994643 0.92 1.0137407
-0.57 1.0031281 -0.07 1.0000032 0.43 0.9994316 0.93 1.0157642
-0.56 1.0028969 -0.06 1.0000020 0.44 0.9993984 0.94 1.0179239
-0.55 1.0026823 -0.05 1.0000011 0.45 0.9993648 0.95 1.0201378
-0.54 1.0024830 -0.04 1.0000006 0.46 0.9993308 0.96 1.0222654
-0.53 1.0022979 -0.03 1.0000002 0.47 0.9992967 0.97 1.0240946
-0.52 1.0021257 -0.02 1.0000001 0.48 0.9992627 0.98 1.0253455
-0.51 1.0019656 -0.01 1.0000000 0.49 0.9992288 0.99 1.0257114
-0.50 1.0018166 0.00 1.0000000 0.50 0.9991954
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FIGURE 2-3a: A plot of the efficiency factorization multiplierγ (vertical axis) vs. the
serial correlation coefficientρ (horizontal axis).

3 Literature review

Consider the linear (or Gauß–Markov) model

E(y) = Xβ ; D(y) = σ2V, (3.1)

whereX is then× p model (or design) matrix andV is then× n dispersion matrix. The
p × 1 vectorβ and the varianceσ2 are unknown and to be estimated based on a single
realization ofy. The matricesX andV are assumed to be known.

When the dispersion matrixV is positive definite, then the so-called “estimating equa-
tions”

X′V−1Xβ̃ = X′V−1y (3.2)

were introduced in 1935 by Aitken [1], and are known as theAitken equations, see, e.g.,
Hinkelmann [31]. WhenX has full column rankp < n, thenX′V−1X is positive definite
(invertible) and (3.2) has the unique solution

β̃ = (X′V−1X)−1X′V−1y , (3.3)
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say. The estimator̃β is known as the generalized least squares (GLS) estimator ofβ, see,
e.g., Seber & Lee [51, p. 67 (2003)], and the estimator

β̂ = (X′X)−1X′y (3.4)

is the well-known ordinary least squares (OLS) estimator ofβ.

Anderson [7, (1948)] seems to have been first to consider conditions for the equality
of the ordinary least squares estimator and the generalized least squares estimator, and his
contributions are discussed in some detail by Baksalary, Puntanen & Styan [10, (1990)];
see also Rao [50, (1967)], Zyskind [64, (1967)], and the survey by Puntanen & Styan [47,
(1989)].

As observed inThe Oxford Dictionary of Statistical Terms[21, p. 127 (2003)], see
also David [20, (1995)],

The concept of efficiency in statistical estimation is due to Fisher [26, (1922)]
and is an attempt to measure objectively the relative merits of several possible
estimators. The criterion adopted by Fisher was that of variance, an estimator
being regarded as more ‘efficient’ than another if it has smaller variance.

The results of Fisher [26] concerned the estimation of a scalar-valued parameter. Wilks
[61, p. 476 (1932)] introduced the notion of generalized variance as the determinant of
the dispersion matrix and was the first, we believe, to define [61, p. 478 (1932)] the
ratio of generalized variances as a measure of efficiency in the estimation of a vector-
valued parameter. It seems that Aitken [3, (1948)] was the first to consider the generalized
variance of the ordinary least squares estimator, and that Watson, in his Ph.D. thesis [57,
p. 66 (1951)], introduced the efficiencyφ of the ordinary least squares estimator as the
ratio of generalized variances and showed that

φ =
|D(β̃)|
|D(β̂)|

=
|X′X|2

|X′VX| · |X′V−1X|
, (3.5)

where| · | denotes determinant. We callφ in (3.5) theWatson efficiency.

It is easy to show that the Watson efficiency

φ ≤ 1, (3.6)

with equality if and only ifβ̂ = β̃ with probability 1, see also (1.17) above. A lower
bound for the Watson efficiency (3.5) is provided by the Bloomfield–Watson–Knott in-
equality

φ =
|X′X|2

|X′VX| · |X′V−1X|
≥

m∏
i=1

4λiλn−i+1

(λi + λn−i+1)2
, (3.7)

wherem = min(p, n − p) andλ1 ≥ · · · ≥ λn are the, necessarily positive, eigenvalues
of V.
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The Bloomfield–Watson–Knott inequality (3.7) was originally conjectured by James
Durbin, see Watson [57, p. 69 (1951)] and watson [58, p. 331 (1955)], but was first estab-
lished form = min(p, n− p) ≥ 2 only much later by Bloomfield & Watson [12, (1975)]
and Knott [38, (1975)]; see also Alpargu, Drury & Styan [4], Chuet al. [17, Lemma 4.1],
Drury et al. [22], Khatri & Rao [36, 37], Yang [63],

Whenp = 1, the Bloomfield–Watson–Knott inequality (3.7) reduces, with the ma-
trix X replaced by the vectorx, to the well-known Kantorovich (or Frucht–Kantorovich)
inequality:

(x′x)2

x′Vx · x′V−1x
≥ 4λ1λn

(λ1 + λn)2
, (3.8)

which was first established by Frucht [28, (1943)] and Kantorovich [35, (1948)]. Watson
[57, Appendix 1, pp. 138–139 (1951)] and [58, Appendix, pp. 340–341 (1955)] used an
inequality due to John William Scott Cassels to prove (3.8) and Watson, Alpargu & Styan
[59] showed that the Cassels and Kantorovich inequalities were equivalent to each other
and to four other named inequalities. See also Alpargu & Styan [5, 6], Druryet al. [22].

Hannan [30, p. 422 (1970)] considered the efficiency of the OLSE of a particular linear
functionp′β, wherep is a givenp× 1 column vector, and showed that

var(p′β̃)

var(p′β̂)
≥ 4λ1λn

(λ1 + λn)2
, (3.9)

see also Golub [29], Magness & McGuire [41], Sengupta & Jammalamadaka [52, §8.1.2,
pp. 315–321], Wang & Chow [55, §5.6.2, pp. 211–215].

Bartmann & Bloomfield [11, (1981)] showed that the Watson efficiency

φ =
|D(β̂GLS)|
|D(β̂OLS)|

=
|X′X|2

|X′VX| · |X′V−1X|

= |I− (X′VX)−1X′VX̄(X̄′VX̄)−1X̄′VX| =
m∏

i=1

(1− ρ2
i ) , (3.10)

whereX̄ is ann × (n − p) matrix such thatX′X̄ = 0 andC(X̄) = N (X), whereC(·)
denotes column space (or range) andN (·) denotes null (column) space.

In (3.10) the upper limitm = min(p, n− p) and theρ2
i are the eigenvalues of

(X′VX)−1X′VX̄(X̄′VX̄)−1X̄′VX (3.11)

and so theρi may be taken as the canonical correlations between the fitted values from
OLS, i.e., the elements of the vectorXβ̂OLS, and the residuals from OLS, i.e., the ele-
ments of the vectory − Xβ̂OLS; see also Puntanen [45]. It follows at once from (3.10)
that the Watson efficiencyφ = 1 if and only if X′VX̄ = 0, as shown by Rao [50] and
Zyskind [64].

As observed by Durbin & Watson [23, (1950)],
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A great deal of use has undoubtedly been made of least squares regression
methods in circumstances in which they are known to be inapplicable. In
particular, they have often been employed for the analysis of time series and
similar data in which successive observations are serially correlated.

As noted in our examples in Section 2 above, the Watson efficiencyφ may be used to
measure the efficiency of ordinary least squares in such situations with the dispersion
matrix

V =


1 ρ ρ2 . . . ρn−2 ρn−1

ρ 1 ρ . . . ρn−3 ρn−2

· · · · · · · · · · · · · · · · · ·
ρn−1 ρn−2 ρn−3 . . . ρ 1

 , (3.12)

whereρ is the serial correlation coefficient. Letr = {ri} denote the vector of residsuals
from ordinary least squares. Then the well-known Durbin–Watson test is based on the
statistic

D =

∑n
i=2(ri − ri−1)

2∑n
i=1 r

2
i

. (3.13)

As noted by Seber & Lee [51, p. 293], the Durbin–Watson test is “perhaps the most
popular test for serial correlation” and “Durbin & Watson [25, (1971)] showed that the
critical regionD < dε for testing the null hypothesisH0 : ρ = 0 against the one-sided
alternativeH1 : ρ > 0 has certain optimal properties; for example it is the locally most
powerful invariant critrical region.”

WhenH0 is true, the null distribution ofD depends on the model matrixX, so that
dε has to be specially computed for eachX. Durbin & Watson [23, (1950)], however,
obtained boundsDL andDU , say, so thatDL ≤ D ≤ DU , and where the null distribu-
tions ofDL andDU do not depend onX. Significance points for this “Durbin–Watson
bounds test” are given by Durbin & Watson [24, (1951)] and by Koerts & Abrahamse [39,
pp. 176–178 (1969)].

The Watson efficiency is not the only measure of efficiency that has been proposed.
Bloomfield & Watson [12, (1975)], see also Bartmann & Bloomfield [11, (1981)], intro-
duced the measure of efficiency

ψ = 1
2 tr(HV −VH)′(HV −VH)

= trHV2 − tr(HV)2 = trHVMV = trHVMVH , (3.14)

whereH = X(X′X)−1X andtr denotes trace. We will callψ the Bloomfield–Watson
efficiency. The matrixH is often called thehat matrix, see, e.g., [40].

Bloomfield & Watson [12, (1975)] showed that

ψ = trHVMVH ≤ 1

4

m∑
i=1

(λi − λn−i+1)
2 , (3.15)
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wherem = min(p, n− p) andλ1 ≥ · · · ≥ λn are the, necessarily positive, eigenvalues of
the covariance matrixV. The inequality (3.15) withp = 1 was established by Styan [53,
(1983)] and was calledStyan’s Inequalityby Jia [33, (1996)] and Jiang [34, (1998)]. We
will call (3.15) theBloomfield–Watson trace inequality. We note thatψ = 0 if and only if
HVM = 0 if and only if the Watson efficiencyφ = 1.

Our original motivation in this research was the paper [14, (1969)] by Canner, who
studied the special case of simple linear regression with model matrix

X =

1 −1
1 0
1 1

 (3.16)

and covariance matrix

V =

1 0 0
0 c 0
0 0 1

 1 r r
r 1 r
r r 1

 1 0 0
0 c 0
0 0 1

 =

 1 cr r
cr c2 cr
r cr 1

 . (3.17)

Canner [14] observed that with the model matrixX and covariance matrixV as given
by (3.16) and (3.17), respectively, the generalized least squares (GLS) regression line lies
completely outside the data set with probability1 providedc and r fall into a certain
region, see Chu [16, ch. I, §1.4, Fig. 1.2]. We observe that with the model matrixX
and covariance matrixV as given by (3.16) and (3.17), respectively, the generalized least
squares (GLS) and ordinary least squares (OLS) regression lines are always parallel with
probability1 for all c, r such that the covariance matrixV is positive definite, and so then
there is a reduction of the Watson efficiency of type 2, see (1.20) in our §1 above. This
result is extended in Chu [16, ch. I, Th. 1] following results of Puntanen [46, (1996)].
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