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Suppose we have two Markov chains defined on the same state space. What happens if we 
alternate them? If they both converge to the same stationary distribution, will the chain 
obtained by alternating them also converge? Consideration of these questions is motivated 
by the possible use of two different updating schemes for MCMC estimation, when much 
faster convergence can be achieved by alternating both schemes than by using either singly. 

 
 
 
 
1 Introduction 
 
Suppose A, B are the transition matrices for two Markov chains on the same state space 
S which converge to the same stationary distribution. Denoting the space of probability 
distributions on S by V, there exists by assumption a unique distribution u such that V∈

At n tv u→  and  as , for every v . Bt n tv u→ n →∞ V∈

Consider now the Markov chain with transition matrix AB. This chain may be derived 
by repeated alternative application of A followed by B since 

(AB) ( A)Bt tv v→  , 

i.e. each AB transition may be regarded as an A transition followed by a B transition. 
We consider here the convergence properties of this alternating chain, given that each of 
the component chains converges to the same distribution. Specifically, we investigate 
whether convergence of AB is assured, and how the rate of convergence of AB relates 
to the separate rates of convergence of A and B. 
 
2 Motivation 
 
Recent interest in the convergence properties of Markov chains has been stimulated by 
the current popularity of Markov chain Monte Carlo (MCMC) methods for the 
estimation of complex statistical models, usually in a Bayesian context. In MCMC a 
Markov chain is constructed whose stationary distribution is the posterior distribution of 
the model parameters. For a review of the methodology and its applications see Gilks et 
al. (1995). Although in most applications the state space is continuous and high-
dimensional, the relevant Markov chain theory is often presented in terms of transition 
matrices on a finite state space, rather than transition kernels, e.g. see Tierney (1994). 
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This facilitates exposition while still providing useful insight into the essential features 
of the situation. We shall see that this is particularly true of our present situation. 
 
Rapid convergence to the stationary distribution is a desirable property when using 
MCMC. It is not uncommon however for convergence to be very slow because of very 
high correlations between some of the parameters in the model. In such situations it 
may be necessary for many thousands of iterations to be obtained before valid 
inferences can be made, and it may even be difficult to assess whether convergence has 
taken place. Sometimes reparametrization can reduce this problem. An alternative 
strategy is to find two different MCMC algorithms for the model and to combine them 
in a hybrid algorithm. 
 
Consider for example the two-component model for errors in chemical assay of Rocke 
& Lorenzato (1995) 

Y Xeηα β ε= + +  

which relates an assay response Y to chemical concentration X in a linear model subject 
to both a multiplicative error η and an additive error ε. Figure 1 shows a typical 
calibration dataset for the estimation of cadmium concentrations. 

Figure 1: Assay
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Figure 2: MCMC output for cadmium data 
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gorithm can be derived by taking the additive errors as nodes. We now 
parameter mixes very slowly because of high correlations with the 
t low concentrations. However by alternating each algorithm we get 
e to the stationary distribution. 

 
trix example 

 stochastic matrices 

.45 .10 .45
A .10 .90 .00

.45 .00 .55

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 and  
.45 .45 .10

B .45 .55 .00
.10 .00 .90

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

tical eigenvalues 1 2 31, .859, .041λ λ λ= = =  and the same stationary 
1 1 1
3 3 3( t) . The rate of convergence of the Markov chain with 

 A is determined by the "eigenvalue gap" defined as the difference 
t and second eigenvalues 1 2 .141λ λ− = , or equivalently by the second 
.859 . The larger the second eigenvalue, the slower the convergence. To 
 the spectral decomposition of A as 

1 1 1 2 2 2 3 3 3A t tv u v u v uλ λ λ= + + t

u

 (1) 

are the left-, and u u  the right-eigenvectors of A, appropriately 
ause of the orthogonality property of the left- and right-eigenvectors 

1 2 3, ,

lows that  

1 1 1 2 2 2 3 3A ( ) ( ) ( )n n t n t nv u v u v uλ λ λ= + + 3
t . 
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Since 3 2 1 1λ λ λ< < =  it follows that  as n  at a rate determined by 1 1An tv u→ →∞ 2λ . 
 
However the transition matrix of the alternating chain is 

.2925 .2575 .45
AB .4500 .5400 .01

.2575 .2025 .54

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

which has eigenvalues 1 2 31, .369, .003λ λ λ= = = . We would expect much faster 
convergence from this chain because of the much smaller second eigenvalue. However 
from the MCMC perspective we should properly compare AB with A2 and B2, because 
the computational effort in making one AB step would be comparable with that of two 
A or B steps. Nevertheless the second eigenvalue of A2 or B2 is  so faster 
convergence should still be achieved. Figure 3 shows that the alternating chain does 
indeed converge more quickly to the stationary distribution 

2
2 0.738λ =

1 1 1
3 3 3( t)  than either of 

the component chains, irrespective of the starting distribution. 
1
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Figure 3: Convergence in L2 of A2, B2 (dotted lines) and AB (solid line) from two 
alternative starting points 

 
This example works because A and B both have large second eigenvalues whereas that 
of AB is much smaller. There is however no simple general relationship between these 
quantities. Moreover the spectral decomposition given in (1) may not be possible in 
general because an n×n stochastic matrix may not have n eigenvalues. In the next 
section we give some simple results for the general situation. 
 
4 Some general results 
 
Theorem 1: If A and B have the same stationary distribution, so does AB. 
 
Proof: Let u be the stationary distribution. Then 1 1

t tu AB u B u= = . 
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Theorem 2: If A and B converge to the same stationary distribution, AB does not 
necessarily converge. 

 
Counterexample: Consider 

0.0 1.0 0.0
0.0 0.5 0.5
1.0 0.0 0.0

A
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

   
0.0 0.0 1.0
0.5 0.5 0.0
0.0 1.0 0.0

B
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

The eigenvalues of A and B are 1 2 31, .25 .66 , .25 .66i iλ λ λ= = − = +  
and both converge to the stationary distribution 1 1 1

4 2 4( )t . But 

0.50 0.50 0.00
0.25 0.75 0.00
0.00 0.00 1.00

AB
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

is reducible, so does not converge. 
 
Theorem 3: If A and B converge to the same stationary distribution, and B is strictly 

positive, then AB converges to the same distribution. 
 
Proof: If B is strictly positive (i.e. every element of B is > 0), it is easy to see that AB is 

strictly positive - since A is a stochastic matrix each row must have at least one 
positive element, with all elements ≥ 0. From Theorem 1 we know that AB has 
the same stationary distribution as A and B. Because it is strictly positive it is 
aperiodic and reducible, so it converges to this distribution. 

 
5 Discussion 
 
The important insight to be gained from the simple matrix examples is that the 
alternating chain does not necessarily converge. Thus in using a hybrid algorithm for 
MCMC estimation, care must be taken to ensure convergence. It is possible, as in the 
counterexample, for the hybrid algorithm to cycle in one part of the state space and not 
to explore other parts. Theorem 3 gives a sufficient condition for convergence but this is 
very strong. It may however be useful. In the two-component model example of Section 
2 it is easy to show that one of algorithms has a strictly positive transition kernel, since 
each of the full conditional distributions in the MCMC updating scheme covers the 
entire range of the respective parameter. Thus convergence of the alternating chain is 
assured. 
 
Our future work on this topic will investigate the use of coefficients of ergodicity 
(Senata, 1979) to derive weaker sufficient conditions for the convergence of alternating 
Markov chains. 
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