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The derivation of mean first passage times in Markov chains involves the 
solution of a family of linear equations. By exploring the solution of a 
related set of equations, using suitable generalized inverses of the 
Markovian kernel I – P, where P is the transition matrix of a finite 
irreducible Markov chain, we are able to derive elegant new results for 
finding the mean first passage times. As a by-product we derive the 
stationary distribution of the Markov chain without the necessity of any 
further computational procedures. Standard techniques in the literature, 
using for example Kemeny and Snell’s fundamental matrix Z, require the 
initial derivation of the stationary distribution followed by the computation 
of Z, the inverse I – P + eπT where eT = (1, 1, …,1) and πT is the stationary 
probability vector. The procedures of this paper involve only the 
derivation of the inverse of a matrix of simple structure, based upon 
known characteristics of the Markov chain together with simple 
elementary vectors. No prior computations are required.  Various possible 
families of matrices are explored leading to different related procedures.  

 
 
 
 
1 Introduction 
 
In solving for mean first passage times in irreducible discrete time Markov chains 
typically the results are expressed in terms of the elements of Z, Kemney and Snell’s 
fundamental matrix, ([7]), or A# the group inverse of I – P, (Meyer, [8]) where P is the 
transition matrix of the Markov chain and I is the identity matrix. The computation of Z 
= [I – P + Π]-1 and A# =  Z – Π both require the prior determination of {πi}, the 
stationary distribution of the Markov chain. We explore the joint determination of both 
the stationary distribution and the mean first passage times using appropriate 
generalized matrix inverses that do not require previous knowledge of the stationary 
distribution. 
  
In an earlier paper (Hunter [6]) the use of special classes of generalized matrix inverses 
was explored in order to determine expressions for the stationary probabilities and the 
mean first passage times, the key properties of irreducible Markov chains. In this paper 
we consider instead a class of generalized inverses that are in fact matrix inverses to 
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give alternative expressions for the stationary probabilities and the mean first passage 
times. We explore the structure of these matrix inverses in order to determine if any 
special relationships exist to provide computational checks upon any derivations of the 
key properties. 
 
 
2 Generalized inverses of Markovian kernels 
 
Let P = [pij] be the transition matrix of a finite irreducible, m-state Markov chain with 
state space S = {1, 2,…, m} and stationary probability vector = (ππ T

1, π2,…, πm).  
 
The following summary provides the key features of generalized inverses (g-inverses) 
of the Markovian kernel I – P that we shall make use of in developing our new results. 
The key results below can be found in Hunter [2]. 
 
G is a g-inverse, or a “Condition 1” g-inverse, of I – P if and only if: 
 

(I – P)G(I – P) = I – P. 
 
Let P be the transition matrix of a finite irreducible Markov chain with stationary 
probability vector . Let eπΤ Τ = (1, 1, …, 1) and t and u be any vectors. 
(a) I – P + tuΤ  is non-singular if and only if and . π T t ≠ 0 uT e ≠ 0
(b) If     and     then     is a g-inverse of I – P. π T t ≠ 0 uT e ≠ 0 [I − P + tuT ]−1

 
All “Condition 1” g-inverses of I – P are of the form [  for 
arbitrary vectors f and g. 

I − P + tuT ]−1 + ef T + gπ T

 
G-inverses may satisfy some of the following additional conditions:  
 Condition 2:   G(I – P)G  = G, 
 Condition 3:   [(I – P)G]Τ  =  (I – P)G, 
 Condition 4:   [G(I – P)]Τ =  G(I – P), 
 Condition 5:   (I – P)G = (I – P)G. 
 
If G is any g-inverse of I – P, define A ≡ I – (I – P)G and B ≡ I – G(I – P), then (Hunter 
[5]) 

  G = [I – P + αβΤ]−1 +                (2.1) γ eπ T ,
where    α = Ae, βΤ = πΤB,  γ + 1 = πΤGα = βΤGe = βΤGα            (2.2) 
and   πΤα = 1, βΤe = 1.                    (2.3) 
Further  A = α πΤ          (2.4) 
and        B = e βΤ.                                                                       (2.5) 
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The parameters α, β, and γ uniquely specify and characterize the g-inverse so that we 
can denote such a g-inverse as G(α , β , γ). In Hunter [5] it is shown that 

 G(α, β, γ) satisfies condition 2 if and only if  γ  = – 1, 
          G(α, β, γ) satisfies condition 3 if and only if α  = π/πΤπ, 
  G(α, β, γ) satisfies condition 4 if and only if β  = e/ eTe, 
  G(α, β, γ) satisfies condition 5 if and only if α = e  and  β = π. 
 
The Moore-Penrose g-inverse of I – P is the unique matrix satisfying conditions 1, 2, 3 
and 4 and has the form G = G(π/π Tπ, e/eTe, − 1). (An equivalent form was originally 
derived by Paige, Styan and Wachter [10].) 
 
The group inverse of I – P is the (unique) (1, 2, 5) g-inverse A# = G(e, π, − 1), as 
derived by Meyer [8]. 
 
Kemeney and Snell’s fundamental matrix of finite irreducible Markov chains (see [7]) 
is Z = = G(e, π, 0),  a (1, 5) g-inverse with γ = 0. [I − P + eπ T ]−1

 
The following results are easily established (see Hunter [2]) 
(a)        (2.6)    u

T [I − P + tuT ]−1 = π T / (π T t).

(b)         (2.7)      [I − P + tuT ]−1t = e / (uT e).
 
 

3 Stationary distributions 
 
There are a variety of techniques that can be used for the computation of stationary 
distributions involving the solution of the singular system of linear equations, π T(I – P) 
= 0T,  subject to the boundary condition π Te = 1.  
 
Since, as we shall see later, the derivation of mean first passage times involves either 
the computation of a matrix inverse or a matrix g-inverse, we consider only those 
techniques for solving the stationary distributions that use g-inverses. This will assist us 
later to consider the joint computation of the stationary distributions and mean first 
passage times with a minimal set of computations. 
 
We consider three specific classes of procedures - one using A = I – (I – P)G, one using 
B = I – G (I – P), and one using simply G.  
 
Theorem 3.1: ([2]) If G is any g-inverse of I – P,  A ≡ I – (I – P)G  and vT is any vector 
such that vTAe ≠ 0 then 

    
   
π T =

vT A
vT Ae

 ,                                                                        (3.1)   
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Furthermore Ae ≠ 0 for all g-inverse of G so that it is always possible to find a suitable 
vT.                    

 T 
 
Theorem 3.1 utilizes the observation that the matrix A has a very special structure. From 
(2.4)  A =    Since, from (2.3), π απ T . Tα = 1 it is clear that α ≠ 0 implying Ae = α ≠ 0 
and thus it is always possible to find a suitable vT for Theorem 3.1. Knowledge of the 
conditions of the g-inverse usually leads to suitable choices of  vT  that simplify vTAe.  
 
Corollary 3.1.1: ([6]) Let G be any g-inverse of I – P, and A= I – (I – P)G.  

(a) For all such G,              
   
π T =

eT AT A
eT AT Ae

.  

(b) If G is (1, 3) g-inverse of I – P, and is the i-th elementary vector, ei
T

               
   
π T =

eT A
eT Ae

 and, for any i =  1, 2, ..., m,  π T =
ei

T A

ei
T Ae

.  

(c) If G is (1, 5) g-inverse of I – P, 

   
π T =

eT A
eT e

 and, for any i  =  1, 2, ..., m,  π T = ei
T A.                   T 

In certain cases the expression B = I – G(I – P) can also be used to find an expression 
for π T. 
 
Theorem 3.2: ([6]) Let G be any g-inverse of I – P that is not a (1, 2) g-inverse, B =                
I – G (I – P) and vT any vector such that vTe ≠ 0. Then 

     
   
π T =

vT BG
vT BGe

 .   

T 
Corollary 3.2.1: ([6]) Let G be  any g-inverse of I – P, and B = I – G (I – P). 
(a) For all G, except a (1, 2) g-inverse, 

                          
   
π T =

eT BG
eT BGe

 and , for any i =  1, 2, ..., m, π T =
ei

T BG

ei
T BGe

. 

(b)  If G is a (1, 5) g-inverse of I – P, then for any i = 1, 2, …, m,  π T = ei
T B.

T 
The above theorems and corollaries all require computation of A or B, based upon prior 
knowledge of G.  If G is of special structure one can often find an expression for π T in 
terms of G alone. 

Theorem 3.3: ([6]) If G is a (1, 4) g-inverse of I – P, π T =
eTG
eTGe

.                                            

T 
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Some of the above expressions are well known. Theorem 3.1 appears in Hunter [2], [3]. 
The first expression of Corollary 3.1.1 (b) was originally derived by Decell and Odell 
[1]. Meyer [8] established the first expression of Corollary 3.1.1 (c) under the 
assumption that G is a (1, 2, 5) g-inverse (but the 2-condition is not necessary). 
 
If vT =    the i-th elementary vector, then e , which must be non-zero 

for at least one such i. Since e consists of elements of the i-th row of A, we can 
always find at least one row of A that does not contain a non-zero element. Furthermore, 
if there is at least one non-zero element in that row, all the elements in that row must be 
non-zero, since the rows of A are scaled versions of π 

ei
T , i

T Ae = ei
Tα = α i

i
T A

T. Thus, if A = [aij] then there is at 
least one i such ai1 ≠ 0 in which case aij ≠ 0 for  j = 1, …, m. This leads to following 
result. 
 
Theorem 3.4: ([6]) Let G be any g-inverse of I – P. Let A = I – (I – P)G ≡  [aij]. 

1

1

     (1 )   0,  

                                  ,      1,  2,  ...,  .                            

m
ikk

rj
j m

rkk

Let r be the smallest integer i i m such that a then

a
j m

a
π

=

=

≤ ≤ ≠

= =

∑

∑
  (3.2) 

 T 

In applying Theorem 3.4 one typically needs to first find a11 ( = 1 − g11 + 
  

).        
If a

p1kk =1
m∑ gk1

11 ≠ 0 then the first row of A will suffice to find the stationary probabilities. If not 
find a21, a31, … and stop at the first non-zero ar1.  
 
For some specific g-inverses we need only find the first row of A. For example 
MATLAB uses the pseudo inverse routine pinv(I – P), to generate  the (1,2,3,4) g-
inverse of  I – P.  
 
Corollary 3.4.1: ( [6]) If G is a (1, 3) or (1, 5) g-inverse of I – P, and if  A = I – (I – 

P)G ≡ [aij] then 

                  

  

 π j =
a1 j

a1kk =1
m∑

,    j =  1, 2, ..., m.                                                           (3.3)  

Proof: If G satisfies condition 3, in which case αα = π /π Tπ 1 ≠ 0. Similarly if G 
satisfies condition 5, α = e in which case α1 = 1. The non-zero form of α1 ensures  
a11 ≠ 0.              

T 
 

G-inverse conditions 2 or 4 do not place any restrictions upon α and consequently the 
non-zero nature of a11 cannot be guaranteed in these situations. 
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While (3.1), (3.2) and (3.3) are useful expressions for obtaining the stationary 
probabilities, the added computation of A following the derivation of a g-inverse G is 
typically unnecessary, especially when additional special properties of G are given.  
 
Rather than classifying G as a specific “multi-condition” g-inverse, we now focus on 
special class of g-inverses which are matrix inverses of the simple form [ , 

where  t and u

I − P + tuT ]−1

T are simple forms, selected to ensure that the inverse exists with     
and    . A general result for deriving an expression for using such a g-inverse 
is the following. 

π T t ≠ 0
uT e ≠ 0 π T

 
Theorem 3.5: If G =    where u and t are any vectors such that     

and    , then 

[I − P + tuT ]−1 π T t ≠ 0

uT e ≠ 0

 
   
π T =

uTG
uTGe

.                                                                    (3.4)  

Hence, if G = [gij] and uT = (u1, u2, …, um), 

  

π j =
uk gkjk =1

m∑
urr=1

m∑ grss=1
m∑

 = 
uk gkjk =1

m∑
urr =1

m∑ gr .

,  j = 1,  2,  ...,  m.                (3.5)  

 
Proof: Using (2.6) it is easily seen that uT [I − P + tuT ]−1e = π T e π T t = 1 π T t  and 
(3.4) follows. The elemental expression (3.5) follows from (3.4).         

T 
The form for π T above has the added simplification that we need only determine G (and 
not A or B as in Theorems 3.1 and 3.2 and their corollaries.) While it will be necessary 
to evaluate the inverse of the matrix I – P + tuT this may either be the inverse of a 
matrix which has a simple special structure or the inverse itself may be one that has a 
simple structure. Further, we also wish to use this inverse to assist in the determination 
of the mean first passage times (see Section 4). 
 
We consider special choices of t and u based either upon the simple elementary vectors 
ei, the unit vector e, the rows and/or columns of the transition matrix P, and in one case 
a combination of such elements. Let denote the a-th column of P and 

 denote the b-th row of P. 

pa
(c) ≡ Pea

   pb
(r )T ≡ eb

T P
 
Table 1 below lists of a variety of special g-inverses with their specific parameters.  All 
these results follow from the observation that if G = [I − P + tuT ]−1then, from (2.2), the 

parameters are given by  The 
special structure of the g-inverses given in Table 1 leads, in many cases, to very simple 
forms for the stationary probabilities. 

α = t / π T t,  β = uT / uTe and γ + 1 = 1 / {(π T t)(uT e)}. 
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In applying Theorem 3.5, observe that  if and only if    if and only if 
= 1. 

π T = uT G uT Ge = 1

  π
T t

 
Table 1: Special g-inverses 

 
Identifier g-inverse Parameters 
 

   [I − P + tuT ]−1 α βT  γ 

 Gee     [I − P + eeT ]−1  e eT /m  (1/m) – 1 

Geb
(r )  [I – P + e ]pb

(r )T -1 e  pb
(r )T  0 

 Geb  [I – P + ]e eb
T -1 e eb

T  0 

Gae
(c)  [I – P + ]pa

(c)eT -1 pa
(c) / π a eT /m  (1/mπa) – 1 

Gab
(c,r )  [I – P + ]pa

(c) pb
(r )T -1 pa

(c) / π a pb
(r )T (1/πa) – 1 

Gab
(c)  [I – P + ]pa

(c)eb
T -1 pa

(c) / π a eb
T  (1/πa) – 1 

 Gae  [I – P + ]eaeT -1 ea/πa eT /m  (1/mπa) – 1 

Gab
(r )  [I – P + e ]a pb

(r )T -1 ea/πa pb
(r )T (1/πa) – 1 

 Gab  [I – P + e ]aeb
T -1 ea/πa eb

T  (1/πa) – 1 

Gtb
(c)  [I – P + ]tbeb

T -1 

   (tb ≡ e − eb + pb
(c) )  

tb  eb
T  0 

 
 
Simple sufficient conditions for = 1 are t = e or t = α (cf. (2.3)). (This later 
condition is of use only if α does not explicitly involve any of the stationary 
probabilities, as for    ) 

π T t

Gtb
(c)

  Gtb
(c) is included in Table 1 as the update replaces the b-th column of I – P by e. 

(See [10]).   
tbeb

T

 
Corollary 3.5.1: If G =     where u[I − P + euT ]−1 Τe ≠ 0,  

   .                                     (3.6)   π
T = uT G

and hence if  uΤ = (u1, u2, …, um) and  G = [gij] then 

  
π j  =  uk gkjk =1

m∑ ,  j =  1,  2,  ...,  m.                                     (3.7)  
T 

In particular, we have the following special cases: 
(a) If uΤ = eΤ  then G ≡ Gee = [ = [gI − P + eeT ]−1

ij] and 

   
π j  =  gkj ≡ g . jk =1

m∑ .                                                          (3.8)  
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(b) If uΤ =    then G ≡    = [I – P + ]pb
(r )T Geb

(r ) epb
(r )T -1  = [gij] and 

π j  =  pbk gkjk =1
m∑ .                                                            (3.9)  

(c)  If uΤ =   then G ≡ Geb
T

eb = [I – P + ]eeb
T -1  = [gij] and 

π j  =  gbj .                                                                          (3.10)  
 
Corollary 3.5.2:  If G = [I – P + teΤ]-1 where πΤ t ≠ 0, 

π T =
eTG
eTGe

,                                                                      (3.11)  

 and hence, if G = [gij], then 

π j =
gkjk =1

m∑
r =1
m∑ grss=1

m∑
 =  

g. j

g..
 ,   j = 1,  2,  ...,  m.              (3.12)  

T 
In particular, results (3.12) hold for G = G , Gae

(c)
ee and Gae. 

 
In the special case of Gee, using (2.6) or (2.7), it follows that g.. = 1, and (3.12) reduces 
to (3.8). 
 
Corollary 3.5.3:  If G = [I – P +   ]teb

T -1 where   π T t ≠ 0,

π T =
eb

TG

eb
TGe

,                                                                      (3.13)  

and hence, if G  = [gij], then 

π j  =
gbj

gbss=1
m∑

 =  
gbj

gb.
,   j =  1,  2,  ...,  m.                      (3.14)  

T 
In particular, results (3.14) hold for G = G , Gab

(c)
ab , Geb and  Gtb

(c).
 
In the special cases of Geb and   , gGtb

(c)
b. = 1 and (3.14) reduces to (3.10). 

 
Corollary 3.5.4:  If G = [I – P +    ]tpb

(r )T -1 where  π T t ≠ 0,

π T =
pb

(r )TG

pb
(r )TGe

,                                                                  (3.15)  

and hence, if G = [gij], then 
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π j =
pbk gkjk =1

m∑
i=1
m∑ pbigiss=1

m∑
  ,   j = 1,  2,  ...,m.                        (3.16)  

T 
In particular, results (3.16) hold for G = , and . Gab

(c,r ) Gab
(r ) Geb

(r )

 
In the special case of   , the denominator of (3.16) is 1 and (3.16) reduces to (3.9). Geb

(r )

 
Thus we have been able to find simple elemental expressions for the stationary 
probabilities using any of the g-inverses in Table 1. In the special cases of Gee, , 

G

Geb
(r )

eb and   the denominator of the expression given by equations (3.5) is always 1. (In 

each other case, observe that

Gtb
(c)

 denominator of the expression is in fact 1/πuTGe b, with 
.)     u

TG = π T / πb

 
We consider the g-inverses of Table 1 in more detail in order to highlight their structure 
or special properties that may provide either a computational check or a reduction in the 
number of computations required. 
 
Let    denote the a-th column of G and  denote the b-th row of G.  

From the definition of G = [ , pre- and post-multiplication by 

ga
(c) = Gea gb

(r )T = eb
T G

I − P + tuT ]−1

  I − P + tuT yields 
 G – PG + t uTG = I,      (3.17) 
 G – GP + Gt uT = I.            (3.18) 

Pre-multiplication by π T and post-multiplication by e yields the expressions given by 
(2.6) and (2.7), i.e.     and . Relationships between the rows, 
columns and elements of G follow from (3.17) and (3.18) by pre- and post-
multiplication by   and and the fact that . 
These are summarised in the following theorem. 

uT G = π T /π T t Gt = e/uT e

ea eb
T gi. = gi

(r )T e,  g. j = eT g j
(c) ,  gij = ei

T Ge j

 
Theorem 3.6: For any g- inverse of the form G = [ , with    and 

, 

I − P + tuT ]−1 π T t ≠ 0

  u
T e ≠ 0

(a) (Row properties)     gi
(r )T − pi

(r )TG = ei
T − ti π T t( ) π T ,              

     gi
(r )T − gi

(r )T P = ei
T − 1 uT e( ) uT ,     

     and hence   gi. = pik gk .k =1

m∑ + 1+ ti ( πkk =1

m∑ tk ).    

(b) (Column properties) g j
(c) − Pgi

(c) = e j − π j π T t( ) t ,              
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g j

(c) − Gpi
(c) = e j − u j uT e( ) e,    

      and hence   
  
g. j = p.k gkjk =1

m∑ + 1+ π j ( tk )
k =1

m∑ ( πkk =1

m∑ tk ),   

  
g. j = g.k pkjk =1

m∑ + 1+ muj ( ukk =1

m∑ ).            

(c) (Element properties)    
  
gij = pik gkjk =1

m∑ + δ ij − tiπ j ( π ktk )
k =1
m∑ ,     

     
  
gij = gik pkjk =1

m∑ + δ ij − u j ( ukk =1
m∑ ).            

T 

Let =   denote the column vector of row sums 

of G and = the row vector of column sums 

of G.  

   
growsum = Ge = g j

(c)
j=1
m∑ [g1., g2.,..., gm.]

T

   
gcolsum

T = eTG = g j
(r )T

j=1
m∑ [g.1,g.2 ,...,g.m]

 
Table 2 is constructed using results of (2.6), (2.7), Theorem 3.6 and the requisite 
definitions. 
A key observation is that stationary distribution can be found in terms of just the 
elements of the b-th row of  Geb ,   Gab

(c) , ,G  and G  This requires the 
determination of just m elements of G.  We exploit these particular matrices later. 

Gab
(r ) (a ≠ b) ab tb

(c).

 
If the entire g-inverse has been computed the stationary distribution can be found in 
terms of   , the row vector of column sums, in the case of G ,  and . In 

each of these cases there are simple constraints on  and , possibly reducing 
the number of computations required, or at least providing a computational check. 

gcolsum
T

ee Gae
(c)

 Gae

ga
(c) growsum

 
In the remaining cases of ,   and , the additional computation of   is 
required to lead to an expression for the stationary probabilities.  

Geb
(r ) Gab

(c,r ) Gab
(r ) pb

(r)T G

 
We can further explore inter-relationships between some of the g-inverses in Table 1 by 
utilizing the following result given by Theorem 3.3 of Hunter [4]. 
 
 
Theorem 3.7: Let P be the transition matrix of a finite irreducible transition matrix of a 
Markov chain with stationary probability vector  Suppose that for i = 1, 2,     

and    u . Then 

π T . π T ti ≠ 0

i
T e ≠ 0

   
[I − P + t2u2

T ]−1 = [I −
eu2

T

u2
T e

][I − P + t1u1
T ]−1[I −

t2π
T

π T t2

] +
eπ T

(π T t2 )(u2
T e )

.          

and hence that 
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[I − P + t2u2
T ]−1 − [I − P + t1u1

T ]−1

=
eu2

T

u2
T e

[I − P + t1u1
T ]−1 t2π

T

π T t2

−
eu2

T

u2
T e

[I − P + t1u1
T ]−1 − [I − P + t1u1

T ]−1 t2π
T

π T t2

+
eπ T

(π T t2 )(u2
T e )

.  

  
T 

In particular, we wish to focus on the differences between G ,    and  . These 
results are used in Section 4. 

aa
(c) Gaa

(r ) Gaa

 
 

Table 2: Row and column properties of g-inverses 
 

G 
g-inverse 

t  uT  ga
(c)  

a-th column 
gcolsum

T  
Column  

sum 

gb
(r )T  

b-th row 
  growsum  

Row 
sum 

 
 

Other properties 

 Gee  e   eT   π T     e m   

  Geb
(r )  e 

  pb
(r)T

 

  eb
T  e 

  pb
(r)T G = π T  

 Geb  e 
  eb

T    π T  e  

  Gae
(c)     pa

(c)  
  e

T  ea  π T π a    
   Gpa

(c) = e m  

  Gab
(c,r )     pa

(c)    pb
(r)T

 

ea + (1 − pba )e    

   

pb
(r)T G = π T π a

Gpa
(c) = e

 

  Gaa
(c) (a = b)

 
   pa

(c)    eb
T  ea   π T π a    

  Gab
(c) (a ≠ b)

 
   pa

(c)    eb
T  e + ea   π T π a    

 Gae    ea    eT  e m  π T π a     

  Gaa
(r ) (a = b)

 
  ea  

   pb
(r )T

 

e  ea
T   

  pb
(r)T G = π T π b

 

  Gab
(r ) (a ≠ b)

 
  ea  

   pb
(r )T eb

T + π T

 

e  π
 

 
  pb

(r)T G = π T π a

 

 Gab    ea  
  eb

T  e  π T π a    

  Gtb
(c)    tb  

  eb
T    π T    eb    Gtb = e  
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Theorem 3.8: 

(a)   
   
Gaa

(c) − Gaa
(r ) =

eaπΤ

π a
 −  eea

T .      (3.19) 

(b)   
   
Gaa − Gaa

(r ) =
eπ T

π a
 −  eea

T  =  e(
π T

π a
 − ea

T ).               (3.20) 

(c)  
   
Gaa − Gaa

(c) =
eπ T

π a
 −  

eaπ T

π a
=   (e − ea )

π T

π a
 .   (3.21) 

Proof:   
(a) Using the results of Theorem 3.7, it is easily seen that  

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )     .  
( )( )

T c T T c T T
c r r r ra a a a

aa aa aa aa aaT T c T T c T T c
a a a a a a

G G G G Gπ π
− = − − +

ee p ee p e
e e p e e p e e p

π
π π π

 (3.22) 

Using,    , ea
T e = 1,  ea

TGaa
(r ) = ea

T ,  pa
(c) = Pea ,  π T pa

(c) = π a ,  ea
T Pea = paa

equation (3.22) simplifies to 

   
Gaa

(c) − Gaa
(r ) =

paaeπ T

π a
 −  eea

T −
Gaa

(r )Peaπ
T

π a
 + 

eπ T

π a
.                                            (3.23)  

Now observe that, by the definition of ,   Gaa
(r )

   I = Gaa
(r ) − Gaa

(r )P + Gaa
(r )ea pa

(r )T .                                                        (3.24)  
Post-multiplying (3.33) by ea yields 

   ea = Gaa
(r )ea − Grr

(r )Pea + Gaa
(r )eaea

T Pea = e − Gaa
(r )Pea + epaa .                               (3.25)  

Substitution of the expression for    G from (3.25) into (3.23) yields (3.19). aa
(r )Pea

(b) and (c) These results follow directly from Theorem 3.7 and the row and column 
properties of   , as given in Table 2.          T Gaa

(r )  and Gaa
(c)

A close study of equation (3.19) shows that and differ only in the a-th row and 
a-th column, with specific elements in the a-th row and column in each matrix as given 
in Table 2, and with all the other elements identical. A formal proof follows from 
(3.29), since for  i ≠ a and j ≠ a, the (i,j)-th element of G is given by 

Gaa
(c) Gaa

(r )

aa
(c) − Gaa

(r )

   
ei

T (Gaa
(c) − Gaa

(r ) )e j = (ei
T ea )(

π T e j

π a
) −  (ei

T e)(ea
T e j ) = 0. 

(A proof can be constructed via determinants and cofactors defining the inverses 
and    upon noting that in constructing I – P +  the only elements of I – 

P that are changed are in the a-th row where each element is zero apart from the (a, a)-
th element which is 1. Similarly that in constructing I – P + 

  Gaa
(c) Gaa

(r ) ea pa
(r )T

pa
(c)ea

T  the only elements of 
I – P that are changed are in the a-th column where each element is zero apart from the 
(a, a)-th element which is 1.) 
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4 Mean first passage times 
 
Let M = [mij] be the mean first passage time matrix of a finite irreducible Markov chain 
with transition matrix P. All known general procedures for finding mean first passage 
times involve the determination of either matrix inverses or g-inverses. The following 
theorem summarises the general determination of M by solving the well known 
equations for the mij: 

mij = 1+ pik
k ≠ j
∑ mkj ,         (4.1) 

using g-inverses to solve the matrix equation ( where E = I − P) M = E − PM d , eeT  = 

[1] and  D = Md
  = (Π )d

-1 with Π =  eπ T .
 
  
Theorem 4.1:  
(a)  Let G be any g-inverse of I – P, then 
  M = [GΠ  – E(GΠ)d + I – G + EGd]D.                         (4.2) 
 
(b) Let H = G(I – Π), then  
  M = [EHd  – H  + I]D.                             (4.3) 
 
 (c) Let C = I – H, then  
  M = [C  – ECd + E]D.                                                          (4.4) 
Proof:  
(a) Expression (4.2) appears in Hunter [3] as Theorem 7.3.6 having initially appeared in 
the literature in Hunter [2].  
(b) Expression (4.3) follows from (4.2) upon substitution. The technique was also used 
in a disguised form in Corollary 3.1.1 of Hunter [6]. 
(c) Expression (4.4) follows from (4.3). It was first derived in Hunter [6]. 

                             T 
 

The advantages of expressions (4.3) and (4.4) is that we can deduce simple elemental 
forms of mij direct from these results. 
 
Corollary 4.1.1:  Let G = [gij], H = [hij], and C = [cij] then  

(a)                     1[  1]     ij ij jj
j

m = c c  +  ,    for all i, j.
π

−     (4.5) 

(b)     

1 , ,
1= [  + ]  =     

1[ ] ,

j
ij jj ij ij

j
jj ij

j

i = j

m h  h
h h i j.

π
δ

π
π

⎧
⎪
⎪− ⎨
⎪ − ≠
⎪⎩

  (4.6) 

(c)         1[ ] [ ]     ij jj ij ij i. j.
j

m = g g  +  + g   g ,  for all i, j.δ
π

− −   (4.7) 
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Proof:  
(a) Result (4.5) follows directly from (4.4) (correcting the results given in Hunter [6]).  
(b) Result (4.6) follows either from (4.3) or (4.5) since hij = δij – cij.  
(c) Since H = G – GΠ, 

  
hij = gij −  gikk =1

m∑ π j  = gij − gi . π j  , for all i, j.                                

and result (4.7) follows from (4.6). Note also that since C = I – H  

 
and hence result (4.7) follows alternatively from (4.5).     

 
cij = δ ij − gij + gikk=1

m∑ π j  = δ ij − gij + gi .π j , for all i, j.                   

T 
 
Note that expression (4.5) has the advantage that no special treatment of the i = j case is 
required. 
 
The following joint computation procedure for πj and mij was given in Hunter [6], based 
upon Theorem 3.4 and Corollary 4.1.1(c) above. (The version below corrects some 
minor errors given in the initial derivation.) 
 
Theorem 4.2:  
1. Compute  G = [gij], be any g-inverse of I – P. 
2. Compute sequentially rows 1, 2, …r ( ≤ m) of A = I – (I – P)G ≡  [aij] until 

, 
  

a.rkk=1

m∑
         (1≤ r ≤ m) is the first non-zero sum. 

3. 

  

Compute  π j =
arj

arkk=1

m∑
,    j = 1, ..., m.  

4. 

  

Compute mij = 

arkk=1

m∑
arj

, i

(g jj − gij ) arkk=1

m∑
arj

= j,

 + (gikk=1

m∑  − g jk ), i ≠ j.

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

 

T 
While this theorem outlines a procedure for the joint computation of all the πj and mij 
following the computation of any g-inverse, the procedure contains the unnecessary 
additional computation of the elements of A. 
 
Observe also that all the expressions of Corollary 4.1.1 require knowledge of the 
stationary probabilities πj. We consider instead first deriving expressions for mijπj. Let N 
= [nij] =  [(1 – δij)mijπj] so that N = (M – Md)(Md)-1. Note that njj = 0 for all j. 
 
Theorem 4.3 follows directly from (4.3) and (4.4), or by solving the matrix equation  

using g-inverse techniques.  
 
 (I − P)N = Π − I ,
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Theorem 4.3: so that   

  

N  = [nij ] = EHd − H  where H = G(I  −  Π),

  
nij = (g jj − gij ) + (gi . − g j .)π j , for all i, j.                                                          

Further,   
   
mij =

1 π j , i = j,

(g jj − gij) π j + (gi . − g j .), i ≠ j.

⎧
⎨
⎪

⎩⎪
                                                          

T 
Let us consider using the special g-inverses given in Table 1 and 2 to find expressions 
for all the πj and the mij. The results are summarised in Table 3. 
Note that simplification of the expressions for mij using ,G  and   results from 

the observation that    is in each case constant. The special case of  deserves 
highlighting. 

Gee eb
(r ) Geb

growsum Geb

 
Theorem 4.4:  If  =     = [gGeb [I − P + e eb

T ]−1
ij], then       

                                                                       (4.8) 
  
π j = gbj ,    j = 1, 2, ...,  m,
and 

  
mij =

1 / gbj , i = j,

(g jj − gij ) gbj , i ≠ j.

⎧
⎨
⎪

⎩⎪
                                                         (4.9)  

T 
This is one of the simplest computational expressions for both the stationary 
probabilities and the mean first passage times for a finite irreducible Markov chain. 
These results do not appear to have been given any special attention in the literature. 

 
If the stationary probability vector has already been computed then the standard 
procedure is to compute either Kemeny and Snell′s ‘fundamental matrix’, ([7]), Z ≡  [I – 
P + Π]-1, where Π = eπ′, or Meyer′s ‘group inverse’, ([8]), A# ≡ Z – Π. Both of these 
matrices are in fact g-inverses of I – P. The relevant results, which follow from 
Corollary 4.1.1 (c) are as follows. 

 
Theorem 4.5: 
(a) If 

   
 then  M = [mZ = [I − P + eπ T ]−1 = [zij ] ij] =  [I  – Z + EZd]D, and 

  
mij =

1 π j , i = j;

(z jj − zij ) π j , i ≠ j.

⎧
⎨
⎪

⎩⎪
                                                             (4.10)  

(b) If 
   

then M = [mA# = [I − P + eπ T ]−1 − eπ T = [aij
# ] ij] =  [I  – A#  + EAd

# ]D and 

mij =
1 π j , i = j;

(a jj
# − aij

# ) π j , i ≠ j.

⎧
⎨
⎪

⎩⎪
                                                             (4.11)  

Proof: See Hunter, [3], Corollary 7.3.6C. These are also special cases of (4.5) since Ze 
= e and A#e = 0, so that Σj zij = zi. = 1 for all i and Σj aij

# = ai.
# = 0 for all i.  
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                                   T 
 
Note the similarity between the expressions (4.9), (4.10) and (4.11), with (4.9) 
obviously the easiest of the three expressions to compute.  

 
Table 3: Joint computation of {πj}and [mij] using special g-inverses 

 
g-inverse πj mij mij  (i ≠ j) 

 Gee  g.j 1/ g.j (gjj – gij) / g.j  

  Geb
(r )   

pbk gkjk∑  
  
1 pbk gkjk∑   (g jj − gij ) pbk gkjk∑  

Geb  gbj 1/ gbj (gjj – gij) / gbj  

  Gae
(c)  g.j /g.. g../ g. (gjj – gij) g../ g. + (gi. – g j.) 

  Gab
(c,r )  

 

pbk gkjk∑
pbigiss∑i∑

 
 

pbigiss∑i∑
pbk gkjk∑

 
(g jj − gij ) pbigiss∑i∑

pbk gkjk∑
+ (gi . − g j .)  

  Gab
(c)  gbj /gb. gb./ gbj (gjj – gij) gb./ gbj + (gi. – g j.) 

Gae  g.j /g.. g../ g. (gjj – gij) g../ g + (gi. – g j.) 

  Gab
(r )  

 

pbk gkjk∑
pbigiss∑i∑

 
 

pbigiss∑i∑
pbk gkjk∑

 
(g jj − gij ) pbigiss∑i∑

pbk gkjk∑
+ (gi . − g j .)  

Gab  gbj /gb. gb./ gbj (gjj – gij) gb./ gbj + (gi. – g j.) 

 Gtb
(c)  gbj 1/ gbj (gjj – gij) / gbj  + (δib – δ bj.) 

 

If 
  

 then G = Gtb
(c) = [gij ] mij =

g jj − gij + δ ij

gbj
+ δbi − δbj , the elemental expressions of M, 

as given by Corollary 7.3.6D(b) of Hunter, [3]. It also appears, in the case b = m, in 
Meyer [9]. 
 
We have been exploring structural results. If one wished to find a computationally 
efficient algorithm for finding πj based upon Geb note that for we need to solve the 
equations    . This reduces the problem to finding an 
efficient package for solving this system of linear equations. Paige, Styan and Wachter 
[10] recommended solving for π using  with , 

using Gaussian elimination with pivoting. Other suggested choices included 
  

, 
the recommended algorithm above. We do not explore such computational procedures 
in this paper. It is however interesting to observe that the particular matrix inverse we 
suggest has been proposed in the past as the basis for a computational procedure for 
solving for the stationary probabilities. Mean first passage times were not considered in 

π T

π T = π T P,  or  π T (I − P + eeb
T ) = eb

T

π T ( I − P + euT ) = uT uT = e j
T P = p j

(r )T

uT = e j
T
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[9] and techniques for finding the mij typically require the computation of a matrix 
inverse. Geb  appears to be a suitable candidate.  
 
In deriving the mean first passage times one is in effect solving the set of equations 
(4.1). If in this set of equations if we hold j fixed, (j = 1, 2, …, m) and let 

  
 = (mm j

T
1j, 

m2j, …, mmj) then equation (4.1) yields 
m j = [I − P + p j

(c)e j ]
−1e  =  G jj

(c)e.                                                      (4.12)  
(This result appears in Hunter [3], as Corollary 7.3.3A). Note the appearance of one of 
the special g-inverses considered in this paper of the form of G with a = j. aa

(c)

 
Theorem 4.6: For fixed j, 1  ≤ i  ≤ m, 
(a)                             (4.13) . T (c)

ij i jjm  = G                        e e

   
Further , if   G jj

(c)= [grs] then  mij = gi.  

(b)                        1.ijT (r)
ij i jj

j
m  = G        

δ
π

+ −   e e               (4.14) 

Further, if 

  

Gjj
(r ) = [grs] then mij = gi. +

δ ij

π j

− 1 =
pjk gk .k =1

m∑ , i = j,

gi. − 1, i ≠ j.

⎧
⎨
⎪

⎩⎪
 

(c)    
1ijT

ij i jj
j

m  = G  .     
δ

π
−

 +e e               (4.15) 

   
Further, if  G jj= [grs] then mij  =

g j. i = j,

gi. − g j. i ≠ j.

⎧
⎨
⎪

⎩⎪
 

Proof: 
Expressions (4.13), (4.14), and (4.15) follow, respectively, from (4.12), (3.19) and 
(4.13), and (3.20) and (4.14) (or (3.21) and (4.13)).  The elemental expressions for  

follow as the i-th component of the  of G . For case (b), from 

Table 2 it follows that 
  

 and . For case (c) 

observe that  =
   

. 

mij

growsum jj
(c),G jj

(r),  and G jj

g j. = 1 p jk gk .k =1
m∑ = p j

(r)T G jj
(r )e = 1 / π j

g j. g j
(r)T e = 1 / π j

T  
 
All of these results are consistent with equation (4.8). For example, for (4.12), with 

= [g
 
G jj

(c)
ij], from equation (3.14), πi = gji /gj. for all i. Observe that from Table 2 that the 

j-th row and column of 
 

are, respectively, and eG jj
(c) π T /π j j, so that for fixed j, gjj = 1, 

and for i ≠ j, gij = 0 and  gji =πi /πj with gj. = 1/πj.  Substitution in (4.7), for fixed j, yields 
mjj = 1/πj = gj. and for i ≠ j, mij  = (gjj  –  gij) gj. + (gi. – gj.) = gi., as given by (4.13).   
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The utilisation of special matrix inverses as g-inverses in the joint computation of 
stationary distributions and mean first passage times leads to a significant simplification 
in that at most a single matrix inverse needs to be computed and often this involves a 
row or column sum with a very simple form, further reducing the necessary 
computations. While no computational examples have been included in this paper, a 
variety of new procedures have been presented that warrant further examination from a 
computational efficiency perspective. 
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