

Götz Trenkler, Dortmund University, Germany On the commutativity of orthogonal projectors

Joachim Werner, Univ of Bonn, Germany and **Ingram Olkin**, Stanford University On permutations of matrix products

Contributed papers

D. Alexander and G. Jones, Massey University, Palmesrton North, New Zealand Convergence Properties of Alternating Markov Chains

Karuthan Chinna, University Technology MARA, Malaysia, (with **Parthasarathy Balachandar** both from Multimedia University, Cyber Jaya, Malaysia) Modeling Multivariate Meta-Analysis Using Bootstrap Resampling Techniques

C. M. Cuadras, University of Barcelona, Spain. Continuous canonical correlation analysis

Mike Doherty, Statistics New Zealand, Wellington Partially diffuse starting values in State Space Models

Jarkko Isotalo and **Simo Puntanen**, University of Tampere, Finland Comparison of the ordinary least squares predictor and the best linear unbiased predictor in the general Gauss--Markov model

Jeff Hunter, Massey University, Auckland Updating mean first passage times in Markov chains

Eric Iksoon Im, University of Hawaii at Hilo, USA Hessian Equivalence to Bordered Hessian

B. Jones, Massey University, Auckland and **M. West**, Duke University, N.C., U.S. Covariance decomposition for Gaussian graphical models

G. Jones, Massey University, Palmerston North Properties of transition matrices for chain binomial models

Lakshmi Narasimhaiah, Adhiyamaan College of Engineering, Tamil Nadu, India; **Kishore Hoysal**, Islamiah Institute of Engineering, Bangalore, India. Model for students expected performance level through varying control limits in relation to Power of Valuation

Simo Puntanen, Univ Tampere, Finland; **Ka Lok Chu**, Dawson College, Montréal, Canada ; **Jarkko Isotalo**, University of Tampere, Finland; **George P.H. Styan**, McGill University, Montréal, Canada Decomposing the Watson efficiency in partitioned linear models

W. Sakamoto, Osaka University, Japan Diagnosing non-linear regression structure with power additive smoothing splines

Burkhard Schaffrin, Ohio State University, Columbus, Ohio, USA On the optimal choice of the regularization parameter through variance ratio estimation

Imbi Traat, University of Tartu, Estonia A matrix with consecutive integer eigen values

Kimmo Vehkalahti, University of Helsinki, Finland Leaving useful traces when working with matrices

Song-Gui Wang and **Zhong-Zhen Jia**, Beijing University of Technology, Beijing, China Estimating the covariance matrix by spectral decomposition approach in linear mixed model

Last Updated: 5 May, 2005