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The geometry of statistical efficiency 1

K. Gustafson

Department of Mathematics
University of Colorado at Boulder, USA

We will place certain parts of the theory of statistical efficiency into the au-
thor’s operator trigonometry (1967), thereby providing new geometrical un-
derstanding of statistical efficiency. Important earlier results of Bloomfield
and Watson, Durbin and Kendall, Rao and Rao, will be so interpreted. For
example, worse case relative least squares efficiency corresponds to and is
achieved by the maximal turning antieigenvectors of the covariance matrix.
Some little-known historical perspectives will also be exposed. The overall
view will be emphasized.

1 Introduction and Summary

Recently Gustafson (1999, 2001, 2002) this author was able to connect the theory of
statistical efficiency to his operator trigonometry, which is a theory of antieigenvalues
and antieigenvectors which he initiated in 1967 for a different purpose. The aim of
this paper is to go beyond the (1999, 2001, 2002) papers to provide a more overall
view of these results and their implications. We will also use this opportunity to
expose some historical perspectives that have been generally forgotten or which are
otherwise little-known.

The outline and summary of this paper is as follows. In Section 2 we obtain the
statistical efficiency ratio of BLUE to OLSE covariance in terms of the geometry
provided by the author’s 1967 operator trigonometry. To fix ideas here, this result
can be described as giving to the 1975 Bloomfield–Watson–Knott solution of the
Durbin conjecture, its geometrical meaning. In Section 3 we provide the reader with
the basics of the operator trigonometry. This is brief but adequate bibliographical
citation is given from which further detail may be obtained. To augment the reader’s
intuition and appreciation for the operator trigonometry, and because we are writing

1This paper is an expanded version of a presentation given at the 14th International Workshop
on Matrices and Statistics, Auckland, New Zealand, March 29–April 1, 2005
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here for an audience of statisticians, in Section 4 we recall the origin of the operator
trigonometry: operator semigroups, with application to Markov processes. This
problem essentially induced both of the key elements of the operator trigonometry.
In Section 5 we return to the topic of statistical efficiency and provide some lesser-
known historical background. This is augmented in Section 6 with a look at an
interesting early paper of Von Neumann. From the latter we are able to make here
an interesting new connection of statistical efficiency to partial differential equations.
In Section 7 we develop the interesting and useful distinction between what we
call inefficiency vectors, versus antieigenvectors. Both satisfy related variational
equations. Through this link we may then relate in Section 8 certain considerations
of canonical correlations as treated in 1987 by Rao–Rao to the general mathematical
setting of statistical efficiency and operator trigonometry, all three now combined.
Section 9 concludes the paper with some further discussion of the historical view of
statistical efficiency as viewed through the context of this paper.

2 The Geometry of Statistical Efficiency

The following was shown in Gustafson (1999, 2002, see also 2001). Consider the
general linear model, we follow Wang and Chow (1994) for convenience,

y = Xβ + e (2.1)

where y is an n-vector composed of n random samplings of a random variable Y , X is
an n×pmatrix usually called the design or model matrix, β is a z-vector composed of
p unknown nonrandom parameters to be estimated, and e is an n-vector of random
errors incurred in observing y. The elements xij of X may have different statistical
meanings depending on the application. We assume for simplicity that the error or
noise e has expected value 0, has covariance matrix σ2V , where V is a symmetric
positive definite n × n matrix. Of course one can generalize to singular V and to
unknown V and so on by using singular value decomposition and generalized inverses
throughout to develop a more general theory but we shall not do so here. We absorb
the σ2 or nonidentical row-dependent variances into V . A customary assumption

on X is that n
>
= 2p, i.e., one often thinks of X as having only a few (regressor)

columns available. In fact it is useful to often think of p as just 1 or 2. Generally it
seems to be usually assumed that the columns of X are linearly independent, and
often it is assumed that those columns form an orthonormal set: X∗X = Ip.

The relative statistical efficiency for comparing an ordinary least squares esti-
mator OLSE β̂ and the best linear unbiased estimator BLUE β∗ is defined as

RE(β̂) =
|Cov(β∗)|
|Cov(β̂)|

=
1

|X∗V X||X∗V −1X|
(2.2)

where | · | denotes determinant. A fundamental lower bound for statistical efficiency
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is

RE(β̂)
>
=

p∏
i=1

4λiλn−i+1

(λi + λn−i+1)2
(2.3)

where λ1
>
= λ2

>
= · · · >

= λn > 0 are the eigenvalues of V . This lower bound is some-
times called the Bloomfield–Watson–Knott lower bound, see Section 5 for more
historical particulars. In Gustafson(1999) the following new and geometrical inter-
pretation of the lower bound (2.3) was obtained. More specifics of the operator
trigonometry, antieigenvalues, and antieigenvectors will be given in the next Sec-
tion 3. The essential meaning of Theorem 2.1 is that the linear model’s statistical
efficiency is limited by the maximal turning angles of the covariance matrix V .

Theorem 2.1. For the general linear model (2.1) with SPD covariance matrix V >
0, for p = 1 the geometrical meaning of the relative efficiency (2.2) of an OLSE
estimator β̂ against BLUE β∗ is

RE(β̂)
>
= cos2 φ(V ) (2.4)

where φ(V ) is the operator angle of V . For p
<
= n/2 the geometrical meaning is

RE(β̂)
>
=

p∏
i=1

cos2 φi(V ) =

p∏
i=1

µ2
i (V ) (2.5)

where the φi(V ) are the successive decreasing critical turning angles of V , i.e., cor-
responding to the higher antieigenvalues µi(V ). The lower bound (2.3) as expressed
geometrically in (2.4) is attained for p = 1 by either of the two first antieigenvectors
of V

x± = ±
(

λ1

λ1 + λn

)1/2

xn +

(
λn

λ1 + λn

)1/2

x1. (2.6)

For p
<
= n/2 the lower bound (2.3) as expressed geometrically in (2.5) is attained as

p∏
i=1

〈V xi
±, x

i
±〉

||V xi
±||||xi

±||
(2.7)

where xi
± denotes the ith higher antieigenvectors of V given by

xi
± = ±

(
λi

λi + λn−i+1

)1/2

xn−i+1 +

(
λn−i+1

λi + λn−i+1

)1/2

xi. (2.8)

In (2.6) and (2.8) xi denotes the normalized ith eigenvector of V corresponding to
the eigenvalue λi.
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In Gustafson (2002) some related trace statistical efficiency bounds were also
given operator trigonometric interpretation.

Commentary. The paper Gustafson (1999) was summarily rejected by one of
the two referees when it was submitted to a journal. It was then published as the
first four sections of Gustafson (2002). See also Gustafson (2001) where the result of
Theorem 2.1 was summarized within the wider context of the operator trigonometry.
Some more related historical perspective will be given in Section 5.

3 The Operator Trigonometry: Antieigenvalues and Angles

For simplicity let A be an n × n symmetric positive definite (SPD) matrix with

eigenvalues 0 < λn
<
= λ2

<
= · · · <

= λ1. Then the first antieigenvalue of A was defined
to be

µ1 = min
x6=0

〈Ax, x〉
||Ax||||x||

(3.1)

and a related entity
ν1 = min

ε>0
||εA− I|| (3.2)

also came naturally into the theory. How that came about will be described in the
next Section 4. Because of the need for both µ1 and ν1, the author felt that ν1 must
also be trigonometric. Indeed it is. Gustafson (1968) established the following key
minmax result.

Theorem 3.1. Given a strongly accretive operator B on a Hilbert space, then

sup
||x||<=1

inf
ε
||(εB − I)x||2 = inf

ε>0
sup
||x||<=1

||(εB − I)x||2. (3.3)

In particular for a SPD matrix A one has

µ2
1 + ν2

1 = 1 (3.4)

Originally the minimum (3.1) was called cosA for obvious reasons, and after The-
orem 3.1 was realized, the minimum (3.2) could be called sinA. This is an essential
critical point to understand about the operator trigonometry. One must have both a
sinA and a cosA if one wants some kind of trigonometry. Later the better notation
cosφ(A) and sinφ(A) was introduced so as to avoid any unwarranted confusion with
cosine and sine functions in an operator’s functional calculus. Moreover then it is
clear that A does have a meaningful operator angle φ(A) defined equivalently by
either (3.1) or (3.2). This operator maximal turning angle φ(A) is a real tangible
angle in n-dimensional Euclidean space. It is attained by A’s two (here normalized
to norm 1) antieigenvectors

x± = ±
(

λ1

λ1 + λn

)1/2

xn +

(
λn

λ1 + λn

)1/2

x1 (3.5)
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where x1 and xn are any (normalized) eigenvectors from the eigenspaces correspond-
ing to λ1 and λn, respectively. The antieigenvectors are those that are turned the
maximal amount when operated on by A, and they thus attain the minimums in
(3.1) and (3.2).

A more general theory has been developed and for that and further history and
other ramifications of the operator trigonometry and antieigenvalue-antieigenvector
theory we just refer to the books Gustafson (1997), Gustafson and Rao (1997), and
the surveys Gustafson (1996, 2001). One more basic ingredient which should be
mentioned here is the Euler equation

2||Ax||2||x||2(ReA)x− ||x||2Re〈Ax, x〉A∗Ax− ||Ax||2Re〈Ax, x〉x = 0 (3.6)

which is satisfied by the antieigenvectors of A, for any strongly accretive matrix A.
When A is Hermitian or normal, this Euler equation is satisfied not only by the first
antieigenvectors x± of A, but also by all eigenvectors of A. Thus the expression (3.1)
generalizes the usual Rayleigh quotient theory for SPD matrices A to now include
antieigenvectors x±, which minimize it, and all eigenvectors, which maximize it.

Higher antieigenvalues µi(A) and their corresponding higher antieigenvectors
were originally defined, Gustafson (1972), in a way analogous to that for higher
eigenvalues in the Rayleigh–Ritz theory. That is okay for some applications but
later, Gustafson (1994), the author formulated a better general combinatorially
based theory in which the higher antieigenvectors are those stated in (2.8). To each
such pair we obtain via (3.1) a sequence of decreasing-in-size maximal interior op-
erator turning angles φi(V ) as indicated in (2.5). See Gustafson (2000) for more
details.

Commentary. This “nested” operator turning angle theory for higher antieigen-
values occurred to the author advantagiously in the process of an application of the
operator trigonometry to iterative solvers of linear systems Ax = b, in the early
1990s, and was first mentioned in Gustafson (1994). See also Gustafson (2000) for
a discussion of this point.

It is interesting to note that antieigenvectors, including the higher ones, always
occur in pairs. In retrospect, this is a hint that there are connections of that fact to
the fact that the usual analyses of statistical efficiency also often end up at a point
where one needs to consider certain pairs of vectors. We will return to this point in
Section 7 below.

4 The Origin of the Operator Trigonometry: Markov Pro-
cesses

The author’s creation of the operator trigonometry in 1967 came out of an abstract
operator–theoretic question. Let X be an Banach space and let A be the densely
defined infinitesimal generator of a contraction semigroup etA on X. In other words,
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consider the intial value problem{
du
dt

= Au(t), t > 0
u(0) = u0 given

(4.1)

and its solution u(t) = Utu0 ≡ etAu0 with the contraction property ||Ut||
<
= 1.

So one can think of the heat equation, or the Schrödinger equation, or a linear
Markov process. In fact it was a question of introducing a stochastic time change
into a Markov process etA which led to the following question: when can one multi-
plicatively perturb A to BA and still retain the contraction semigroup infinitesimal
generator property in BA? The result was the following, Gustafson (1968a), stated
here in now familiar terms.

Theorem 4.1. Let A be the infinitesimal generator of a contraction semigroup on
a Banach space X. Then BA is still an infinitesimal generator of a contraction
semigroup if B is a strongly accretive operator satisfying

sinφ(B)
<
= cosφ(A) (4.2)

But the proof of Theorem 4.1 in Gustafson (1968a) did not originally involve any
entity sinφ(B) because such entities did not exist yet. The proof instead needed

||εB−I|| <
= µ1(A) for some positive ε. By the minmax Theorem 3.1, this requirement

becomes (4.2).
Therefore to better understand these now trigonometric entities, the author

quickly computed them for some operator classes. For the most definitive and most

useful class, A a SPD matrix with eigenvalues 0 < λn
<
= λn−1

<
= · · · <

= λ1, one has

cosφ(A) =
2
√
λ1λn

λ1 + λn

, sinφ(A) =
λ1 − λn

λ1 + λn

, (4.3)

which are attained by the antieigenvector pair (3.5).
Commentary. It was very fortunate that the 1967 proof of Theorem 4.1 neces-

sitated both entities µ1 and ν1, and hence gave rise to both cosφ(A) and sinφ(A), in
a natural way. For more information and background on the operator trigonometry
and the antieigenvalue–antieigenvector theory, see the not-so-old books Gustafson
(1997), Gustafson–Rao (1997).

5 Some History of Statistical Efficiency

Although the theory of statistical efficiency is well documented in a number of
books, and in the 1970’s papers of Bloomfield–Watson (1975), Knott (1975), and
others, nonetheless in writing Gustafson (1999) this author wanted to get some
original feel of the history for himself. For one thing, it was wondered where the
“Durbin conjecture” which led to the lower bound (2.3) was explicitly stated. This
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was not found. But some related historical perspectives were put into Section 4 of
Gustafson (1999, 2002). There for example one finds a description of precursor work
of Plackett (1949), Aiken (1934), and Durbin and Kendall (1951). The latter paper
is quite explicitly geometrical, although, not operator theoretically. Plackett (1949)
takes the fundamental notions all the way back to Gauss.

A second more recent historical look has revealed some further interesting his-
torical perspectives. In particular the Watson (1955) paper is probably the explicit
source of the “Durbin conjecture”. In fact one finds it there, eqn (3.5), with a
footnote crediting it to J. Durbin. However, Watson (1967) admits a flaw in his
1955 argument and thus the verification of the Durbin conjecture remained an open
problem until 1975.

Going back further to the two papers Durbin–Watson (1950, 1951), one finds a
more classical statistical analysis of (2.1) from the point of view of χ2 distributions,
which is of course of central importance to the theory of analysis of variance. In
particular the second paper is largely devoted to a study of the statistic

d =

∑
(∆z)2∑
z2

(5.1)

which is to be used for testing for serial correlation within error terms of a regression
model. We go back to the first paper and find that (p. 409) the principal issue is
“the problem of testing the errors for independence forms the subject of this paper
and its sucessor.” Attribution is made to earlier papers by T. W. Anderson (1948),
R. L and T. W. Anderson (1950), where possible serial correlations in least squares
residuals from Fourier regressions were tested. In Watson (1967) which is quite a
useful paper historically, study of the efficiency of least squares is said to follow
that of Grenander (1954), Grenander and Rosenblatt (1957). In fact we have traced
efficiency explicitly back to Fisher (1922). See our further discussion in Section 9.

Commentary. We don’t even want to touch the often discussed question of
who first discovered what is now called the Kantorovich inequality. We ourselves
did not know it and independently recreated it in obtaining the expressions (4.3).
Watson (1955) attributes it to a proof given by Cassels in an appendix to that paper.
Certainly Durbin in conjecturing his lower bound in that paper, unconsciously at
least, stumbled upon it. In Watson (1967) it is attributed to the book Hardy,
Littlewood, Polya (1934). An extremely complete and extensive history has been
given in reviews by Styan and associates, see e.g. Watson, Alpargu, Styan (1997),
who conclude that the pioneering credit for the inequality goes to Frucht in 1943.

However, to our knowledge, we were the first to see its natural and direct trigono-
metric content: that of maximal operator turning.
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6 The Von Neumann Connection and a New Connection to
Partial Differential Equations

In our historical search, tracing back through the two papers Durbin and Watson
(1950, 1951), one comes upon the interesting n× n matrix

A =



1 −1 0 . . . 0
−1 2 −1 · · · 0
0 −1 2 −1 · · · 0
... · · · 0

−1 2 −1
0 −1 1


(6.1)

It is stated there that this results from the statistic to be used to test for serial
correlation

d =

∑
(∆z)2∑
z2

=
〈Az, z〉∑

z2

where z is the residual from linear regression. It was shown (1951) that the mean
and variance of the statistic d are given by

E(d) = P
n−k′−1

var(d) = 2[Q−PE(d)]
(n−k′−1)(n−k′+1)

(6.2)

where
P = trA− tr(X ′AX(X ′X)−1)
Q = trA2 − 2tr(X ′A2X(X ′X)−1) + tr((X ′AX(X ′X)−1)2 (6.3)

where k′ is the number of columns of the matrix of observations of the independent
variables  x11 x21 · · · xk′1

...
x1n x2n · · · ck′n

 (6.4)

One wonders, or at least this author wondered, about how A came about. It turns
out that this query became quite interesting, as we now explain.

A more careful reading of Durbin and Watson (1950) leads to a paper of J.
Von Neumann (1941) and one cannot resist looking at it. As is well-known, Von
Neumann was a polymath and this paper is no exception. An in-depth study of the
statistic

η =
δ2

s2
(6.5)

is carried out, where s2 is the sample variance of a normally distributed random vari-
able and δ2 =

∑n−1
µ=1(xµ+1−xµ)2/(n−1) is the mean square successive difference, the

goal being to determine the independence or trend dependence of the observations
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x1, . . . , xn. Thus we find this paper to be an early and key precedent to all the work
by Durbin, Watson, and others in the period 1950–1975.

Von Neumann’s analysis is extensive and he obtains a number of theoretical
results which, if we might paraphrase Durbin and Watson (1950), p. 418, are more
or less beyond use by conventional statisticians. However, both Durbin–Watson
papers (1950, 1951) go ahead and use the matrix A to illustrate their theory. So
one looks further into Von Neumann’s paper to better understand the origin of the
matrix A of (6.1). One finds there (p. 367) the statement “The reasons for the study
of the distribution of the mean square successive difference δ2, in itself as well as in its
relationship to the variance s2, have been set forth in a previous publication, to which
the reader is referred.” However it is made clear that comparing observed values of
the statistic η will be used to determine “whether the observations x1, . . . , xn are
independent or whether a trend exists.”

Curiousity knowing no bounds, we pushed the historical trace back to the pre-
vious publication V. Neumann, Kent, Bellison, Hart (1941). The answer to our
curiousity about why Von Neumann became involved with this statistical regres-
sion problem is found there. To quote (p. 154): “The usefulness of the differences
between successive observations only appears to have been realized first by ballis-
ticians, who faced the problem of minimizing effects due to wind variation, heat
and wear in measuring the dispersion of the distance traveled by shell.” The 4 au-
thor paper originated from the Aberdeen Ballistic Research Laboratory, where Von
Neumann was consulting.

Returning to his analysis in Von Neumann (1941), we find he begins with a now
more or less classical multivariate analysis of normally distributed variables. By
diagonalization, a quadratic form

∑
Aµx

′
µ is obtained where the Aµ, µ = 1, . . . , n,

are the eigenvalues of the form (n−1)δ2. A smallest eigenvalue An = 0 is found, with
eigenvector x0 = (1, . . . , 1)/

√
n. A further analysis, using an interesting technique

of assuming the x′1, . . . , x
′
n−1 to be uniformly distributed over an n− 1 unit sphere,

shows that the statistic η of (6.5) is then distributed according to

η =
n

n− 1

n−1∑
µ=1

Aµx
2
µ. (6.6)

Thus the sought eigenvalues Aµ, µ = 1, . . . , n, are the eigenvalues of the quadratic
form (n− 1)δ2, which is then written as

(n− 1)δ2 = x2
1 + 2

n−1∑
µ=2

x2
µ + x2

n − 2
n−1∑
µ=1

xµxµ+1. (6.7)

The matrix of this form is (6.1) and it is that matrix which is also borrowed and
used in Durbin and Watson (1950, 1951). Used as well are the eigenvalues

Ak = 4 sin2

(
kπ

2n

)
, k = 1, . . . , n− 1 (6.8)
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which Von Neumann computes from the determinant of A.
Commentary. When we first saw the matrix A in Durbin and Watson (1950,

1951), our take was completely different. As this author is a specialist in partial
differential equations, e.g. see Gustafson (1999b), we immediately saw the matrix
A in (6.1) as the discretized Poisson–Neumann boundary value problem{

−d2u(x)
dx2 = f(x), 0 < x < 1

du
dx

= 0 at x = 0, 1.

}
(6.9)

In saying this I am disregarding the exact interval and discrete ∆x sizes.
This new connection between statistical efficiency and partial differential equa-

tions will be further explored elsewhere, especially as it will no doubt generalize to
Dirichlet, Neumann, and Robin boundary value problems for the Laplacian operator
−∆ =

∑
∂2u/∂x2 in higher dimensions. The reverse implications for a more general

context of statistical efficiency could also be interesting. Moreover we have already
worked out the complete operator trigonometry for the two-dimensional discretized
Dirichlet problem in Gustafson (1998).

We also comment in passing that a similar ballistic’s problem, that of control
of rocket flight, was the motivating application in Japan during the Second World
War that led Ito to develop his stochastic calculus now so important in the theory
of financial derivatives and elsewhere.

7 The Inefficiency Equation and the Euler Equation

Following Wang and Chow (1994), among others, one may apply a Lagrangian
method to

RE(β̂)−1 = |XV −1X||X ′V X| (7.1)

the general case having been reduced to that of X ′X = Ip. By a differentiation of
F (x, λ) = ln |X ′V −1X|+ln |X ′V X|−2tr(X ′XΛ) and subsequent minimization, the
relation

X ′X(Λ + Λ′) = Λ + Λ′ = 2Ip (7.2)

is obtained. Here Λ is a p× p upper triangular matrix which is the Lagrange multi-
plier with respect to the constraint X ′X = Ip. From this and further work including
the simultaneous diagonalization of X ′V 2X, X ′V X andX ′V −1X, one arrives at the
result

RE(β̂)−1 =

p∏
i=1

x′iV xix
′
iV

−1xi (7.3)

where X is now the n× p column matrix X = [(x1) · · · (xp)] whose columns go into
the expression (7.3). The Lagrange multiplier minimization leading to (7.3) has also
now yielded the equation for the xi:

V 2xi

x′iV xi

+
xi

x′iV
−1xi

= 2V xi, i = 1, . . . , p. (7.4)
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Clearly the span {xi, V xi} is a two (or one) dimensional reducing subspace of V
and is spanned by two (or one) eigenvectors ψj and ψk of V . Writing each column
xi =

∑n
j=1 αijψj in terms of the full eigenvector basis of V , (7.4) yields the quadratic

equation
z2

x′iV xi

− 2z +
1

x′iV
−1xi

= 0 (7.5)

for the two (or one) eigenvalues λj and λk associated to each xi, i = 1, . . . , p.
Substituting those eigenvalues as found from (7.5) into (7.3) brings (7.3) to the
statistical efficiency lower bound (2.3).

On the other hand, the Euler equation (3.6) from the operator trigonometry, for
n× n SPD matrices A, becomes

A2x

〈A2x, x〉
− 2Ax

〈Ax, x〉
+ x = 0. (7.6)

Comparison of (7.5), which we call the Inefficiency equation, and the Euler equation
(7.6) yields the following result

Theorem 7.1. For any n × n SPD covariance matrix V or more generally any
n× n SPD matrix A, all eigenvectors xj satisfy the Inefficiency equation (7.5) and
the Euler equation (7.6). The only other vectors satisfying the Inefficiency equation
(7.5) are the “inefficiency vectors”

xj+k
± = ± 1√

2
xj +

1√
2
xk (7.7)

where xj and xk are any eigenvectors corresponding to any distinct eigenvalues
λj 6= λk. The only other vectors satisfying the Euler equation (7.6) are the antieigen-
vectors

xjk
± = ±

(
λk

λj + λk

)1/2

xj +

(
λj

λj + λk

)1/2

xk. (7.8)

For details of the proof of Theorem 7.1, see Gustafson (1999, 2002).

Commentary. The statistical interpretation of relative statistical inefficiency
of an OLSE estimator β̂ in terms of (2.2) is that the design matrix X chosen for
(2.1) unfortunately contains columns of the form (7.7). That is why we called those
the inefficiency vectors of V . The most critical are of course those with j = 1 and
k = n. On the other hand, the new geometrical interpretation of relative statisti-
cal inefficiency of an OLSE estimator β̂, now in terms of the bound (2.3) as seen
trigonometrically according to Theorem 2.1, is now that in the worst case situation,
the matrix X under consideration unfortunately contains columns of the form (7.8).
These antieigenvectors represent the critical turning angles of the covariance matrix
V . The worst case is when j = 1 and k = n.
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8 Canonical Correlations and Rayleigh Quotients

The Euler equation for the antieigenvectors can be placed (at least in the case of
A symmetric positive definite) within a context of stationary values of products of
Rayleigh quotients. To do so we refer to the paper Rao, Rao (1987). If one considers
the problem of obtaining the stationary values of an expression

x′Cx

(x′Ax)1/2(x′Bx)1/2
(8.1)

with A and B symmetric positive definite and C symmetric, then squaring (8.1)
gives the product of two Rayleigh quotients

〈Cx, x〉
〈Ax, x〉

· 〈Cx, x〉
〈Bx, x〉

. (8.2)

Taking the functional derivative of (8.1) with respect to x yields the equation

x′Cx

x′Ax
Ax+

x′Cx

x′Bx
Bx = 2Cx. (8.3)

Note that if we let C = T , A = T 2, B = 1, then (8.1) becomes the antieigenvalue
quotient (3.1). Similarly (8.3) for the same operators and x normalized to ||x|| = 1
becomes the Euler equation (7.6). On the other hand, the full Euler equation (3.6)
for any bounded accretive operator A on any Hilbert space is more general than (8.3)
in the sense of operators treated. Moreover one can easily put B and C operators
into the coefficients by a similar derivation. Thus a general theory encompassing
statistical efficiency, operator trigonometry, and canonical correlations, could be
developed.

Commentary. In their analysis Rao, Rao (1987), they arrive at two cases,
the first corresponding to stationary values equal to 1, the second corresponding
to smaller stationary values. As concerns the second case, they note that “there
can be solutions of the form x = aei + bej”, where the ei and ej are eigenvectors.
But we now know from the operator trigonometry that these are the two cases
covered by our Euler equation (3.6), and that the solutions in the second case are
the antieigenvectors.

9 Concluding Discussion

Who first formulated the definition RE(β̂) of statistical efficiency was not clear to
this author. Durbin and Kendall (1951), certainly two great veterans in the field,
specifically define E to be the efficiency of t′ relative to t according to (p. 151):

ρ(t, t′) =

√
vart

vart′
=
√
E (9.1)
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Here t =
∑n

j=1 λjxj is a linear estimator of the mean. To be unbiased, the coefficients

λj must satisfy
∑
λj = 1. The variance of the estimator t is then σ2

∑
λ2

j = σ2(OP )2

where OP is the line segment from the origin to the
∑
λj = 1 hyperplane in λ-space.

Clearly the smallest such variance arrives when one takes the point P to be the
bottom of the line segment perpendicular to the hyperplane. Variance of t′ is just
σ2(OP ′)2 for any other point P ′ in the hyperplane. So E = cosφ where φ is the
angle between the lines OP and OP ′.

Durbin and Kendall (1951) cite the book of Cramér (1946) for statistical effi-
ciency. There, Chapter 32, p. 474, Cramér makes it clear that “In the sequel, we
shall exclusively consider the measures of dispersion and concentration associated
with the variance and its multidimensional generalizations.” Then (p. 481) the effi-
ciency e(α∗) is defined to be the ratio between the variance D2(α∗) of an unbiased
and regular estimate α∗ and its smallest possible value

1

n
∫ ∞
−∞

(
∂ log f

∂α

)2
fdx

. (9.2)

Here f(x, α) is a continuous frequency function. The discrete case is also worked out
in later pages. Cramér attributes the concept of efficient estimate to R. A. Fisher
(1922, 1923–25). Also mentioned (p. 488) are (later) papers by Neyman, Pearson,
Koopman. So the theory of statistical efficiency arises centrally out of the general
theory of estimation of variance by maximum likelihood methods, and it seems, from
the early days of that development.

In Freund’s classic textbook, Miller and Miller (1999), one finds (p. 327) that

the fact that var(θ̂)
>
= the quantity in (9.2), is called the Cramér–Rao inequality.

The denominator of (9.2) is interpretted as the information about the estimator θ
which is supplied by the sample. Smaller variance is interpretted to mean greater
information. Thus, as Cramér already made clear, see our quote above and Chapter
32 of his book, we are looking at central tendency as measured by second moments.

We decided to bit the bullet and go back to Fisher (1922, 1923–25). Indeed in
his first paper on p. 309 he clearly defines Efficiency of a statistic as “the ratio
which its intrinsic accuracy bears to that of the most efficient statistic possible. It
expresses the proportion of the total available relevant information of which that
statistic makes use.” He carefully attributes, or designates, or in any case, cites
in connection with that definition, a 1908 paper by Student and a 1763 paper by
Bayes. Then on p. 315 we find “in 1908 Student broke new ground by calculating
the distribution of the ratio which the deviation of the mean from its population
value bears to the standard deviation calculated from the sample.” Of course both
papers also contain excellent discussions of the Method of Maximum Likelihood and
its pros and cons.

Here this author must interject that in a classified Naval Intelligence task, in 1959
this author first became aware of, and implemented, the χ2 distribution for estimat-
ing goodness-of-fit for combinations of normally distributed random variables. The
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application was concerned with observations at several receiving sites of the bear-
ings of received signal from a transmitting enemy submarine. For an unclassified
account of this work, see the paper Gustafson (1999a). This author still remembers
the genuine joy of operational naval personnel as they called out “the χ2 of the fit
is . . . !” It is also perhaps an amusing irony that 45 years later this author, through
the indirect and abstract path of his operator trigonometry, has arrived back at χ2

testing.
A second point for discussion is that in this treatment we have not gone into the

more general theory of statistical efficiency utilizing generalized inverses. Certainly
it is natural and essential to do so for both theory and for statistical applications.
For example when V is nonsingular one has, e.g. see Puntanen and Styan (1989),
in terms of generalized inverses,

BLUE(Xβ) = Xβ∗ = X(X∗V −1X)−X∗V −1y

OLSE(Xβ) = Xβ̂ = X(X∗X)−X∗y.
(9.3)

However in this author’s opinion the essential points are first seen for p = 1, i.e.,
in the case of X a single regressor vector. In any case, the more general theory
including generalized inverses is now so well worked out in the mathematical statis-
tics literature that such a state of affairs should excuse the author from having to
process it all. On the other hand it is equally clear that the operator trigonometry
of statistical efficiency should be extended to that setting including generalized in-
verses and moreover singular correlation matrixes V . Possibly we shall do that in
the future, but such a comprehensive study is a task for another paper.

However, we here may “close the picture” from the other direction. From the
usual assumption X∗X = Ip where X is an n×p semiunitary matrix, it is instructive
to take its p orthonormal columns and conceptually add to them n− p orthonormal
columns. These may be thought of as “fictitious” additional regressors that one
would like to have. How to do so is just the procedure in the proof of the classical
Schur theorem. Call any one of these enlarged unitary regressor matrices X. Then
(9.3) simplifies to

BLUE(Xβ∗) = X−1y, OLSE(Xβ̂) = y. (9.4)

Also the efficiency (2.2) becomes 1, caused essentially by the unitarity of X. Al-
though this exercise should not surprise anyone, still it seems to this author that the
generalized inverse theory could be viewed as an “intermediate” theory dealing with
how badly you have truncated and otherwise abused the fictitiously available large
set of Schur unitaries. As a variation on this theme, for an arbitrary n × n matrix
X written in its polar form X = U |X| where U is the isometry from the range
of the absolute value operator |X| to the range of X, the operator trigonometry
concerns itself only with the turning angles of the Hermitian polar factor |X|. See
Gustafson (2000) for more on this point. Thus the essence of the minimization of
the Durbin lower bound (2.3) by its attainment by antieigenvector regression vectors
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as described in Theorem 2.1 has to do with the polar Hermitian factor of X, and
not with its isometric factor U . So our thought experiment exercise leading to (9.4)
says that the unitary factor of the design matrix X has no effect on its statistical
efficiency.

To conclude: in this paper we have placed the theory of statistical efficiency
into the geometrical setting of the author’s operator trigonometry. There are many
remaining aspects of both, and their further interconnection, with which we have
not dealt.

Acknowledgements

The author thanks Jeffrey Hunter and the organizers of IWMS2005 for the oppor-
tunity to speak at the conference. Also the author thanks George Styan and Simo
Puntanen for their interest and communications in recent years which encouraged the
author to present his new operator-theoretic geometrical view of statistical efficiency
and statistical estimation and related matters to the matrix statistics community.
There has been some recent concurrent related work which employs the author’s
theory of antieigenvalues by the school of C. R. Rao which has also been reported
to this Workshop.

References

Aitken, A. C. (1934). On least squares and linear combination of observations.
Proc. Royal Soc. Edinburgh A55, 42–48.

Anderson, R. L. and Anderson, T. W. (1950). Distribution of the circular serial
correlation coefficient for residuals from a fitted Fourier series. Annals of
Math. Stat., 21, 59–81.

Anderson, T. W. (1948). On the theory of testing serial correlation. Skand. Aktu-
arietidskr., 31, 88–116.

Bloomfield, P. and Watson, G. S. (1975). The inefficiency of least squares. Biomet-
rica, 62, 121–128.

Cramér, H. (1946). Mathematical Methods of Statistics. Princeton:Princetion Uni-
versity Press.

Durbin, J. and Kendall, M. G. (1951). The geometry of estimation. Biometrika,
38, 150–158.

Durbin, J. and Watson, G. S. (1950). Testing for serial correlation in least square
regression. I. Biometrica, 37, 409–428.



120 K. Gustafson

Durbin, J. and Watson, G. S. (1951). Testing for serial correlation in least square
regression. II. Biometrica, 38, 159–177.

Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics.
Phil. Trans. Royal Soc. London, A 222, 309–368.

Fisher, R. A. (1923–25). Theory of statistical estimation. Proc. Cambridge Phil.
Soc., 22, 700–725.

Grenander, U. (1954). On the estimation of regression coefficients in the case of an
autocorrelated disturbance. Annals of Math. Stat., 25, 252–272.

Grenander, U. and Rosenblatt, M. (1957). Statistical Analysis of Stationary Time
Series. New York:Wiley.

Gustafson, K. (1968). A min-max theorem. Notices Amer. Math. Soc., 15, 799.

Gustafson, K. (1968a). A note on left multiplication of semigroup generators. Pa-
cific J. Math., 24, 463–465.

Gustafson, K. (1972). Antieigenvalue inequalities in operator theory. Inequalities
III, O. Shisha, ed., Academic Press, New York, 115–119.

Gustafson, K. (1994). Antieigenvalues. Linear Algebra Appl. 208/209, 437–454.

Gustafson, K. (1996) Commentary on topics in the analytic theory of matrices.
Collected Works of Helmut Wielandt 2, B. Huppert and H. Schneider, eds.,
DeGruyters, Berlin, 356–367.

Gustafson, K. (1997). Lectures on Computational Fluid Dynamics, Mathematical
Physics, and Linear Algebra. Singapore:World Scientific.

Gustafson, K. (1998). Operator trigonometry of the model problem. Numer. Lin.
Algebra Appl., 5, 377–399.

Gustafson, K. (1999). On geometry of statistical efficiency. (preprint).

Gustafson, K. (1999a). Parallel computing forty years ago. Math. Comput. Simu-
lation, 51, 47–62.

Gustafson, K. (1999b). Partial Differential Equations, 3rd Edition, Dover, New
York.

Gustafson, K. (2000). An extended operator trigonometry. Linear Algebra Appl.,
319, 117–135.

Gustafson, K. (2001). An unconventional computational linear algebra: operator
trigonometry. Unconventional Models of Computation, UMC’2K, I. Antoniou,
C. Calude, M. Dinneen, eds., Springer, London, 48–67.



The geometry of statistical efficiency 121

Gustafson, K. (2002). Operator trigonometry of statistics and economics. Linear
Algebra Appl., 354, 141–158.

Gustafson, K. and Rao, D. (1997). Numerical Range: The Field of Values of Linear
Operators and Matrices. Berlin:Springer.
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