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Leaving useful traces when working

with matrices

Kimmo Vehkalahti

Department of Mathematics and Statistics
University of Helsinki, Finland

We consider the documentation of the working process in the context of matrix
computations and multivariate statistical analyses. Our focus is on the way of
working: how well does the working process get documented dynamically, or
what sort of traces are left behind. These questions are relevant in any area of
research. Leaving useful traces while working may save a considerable amount
of time, and provide better possibilities for other researchers to comprehend
the points of a study. These principles are demonstrated with examples using
Survo software and its matrix interpreter.

1 Introduction

Documentation is a critical part of the working process in any area of research. The
results of a study are not enough. We should also consider and answer the following
questions: How did we achieve the results? How did we justify the analyses? How
did we correct the errors? Why did we take a particular step? How do we repeat
the steps?

Errors in the data or in the working process can not be avoided, since they will
occur in each research project. Therefore it should be a routine to correct any error
when detected, document the correction, make necessary updates, and continue
working without disturbing the thinking. A good test for any researcher and any
software environment would be to find out how easily the errors are detected, and
how quickly the results are reproduced after the errors have been corrected.

In general, we should pay more attention to the quality of the working process:
How does the work proceed? How well does it get documented? Since our interest
is mainly in the dynamic documentation, we would like to ask: What sort of traces
are left behind while working? Can we retrace our steps efficiently, as we take steps
forwards and backwards, perhaps following some side tracks?



144 Kimmo Vehkalahti

2 Leaving traces—what do we get?

The traces represent saved ideas and documented thoughts that are processed while
working. Leaving useful traces may save a considerable amount of time. It supports
the researcher in backtracking immediately when certain steps of the process have
to be repeated. Useful traces help to avoid re-inventing the wheel, and to hold the
process together, especially when managing multiple projects simultaneously. They
may also provide better possibilities for other researchers to comprehend the points
of a study.

Gentleman and Temple Lang [7] have introduced the term compendium to refer
to documents that are self-contained mixtures of code, text, and data. Publishing
compendiums instead of traditional scientific papers allows the readers to verify what
exactly have been done and how. A proper documentation of the working process
published together with accompanying software tools may encourage reproducible
research, meaning that the reader can directly reproduce the results employing the
methods that are presented in [7].

Regardless of whether the results are published as a compendium or as a tradi-
tional scientific publication, it is important for the researcher to leave useful traces
when working with research problems. For example, it may be quite demanding to
trace one’s own thoughts and ideas in the middle of a review process of a paper,
perhaps several months after submitting the manuscript to a journal. With a good
documentation it is easier to get back on the track.

3 Software environment—what do we need?

The working process depends heavily on the software environment, which may con-
sist of several different software packages with varying user interfaces. The support
from the software environment is needed in the working process including the docu-
mentation. This applies for large scale tasks, but also for small details, which tend
to appear repeatedly during the working process.

In general, we should have flexible tools for saving the ideas and thoughts while
working. It is preferable to have possibilities for writing free notes and comments
nearby the actual operations that are committed. In this sense, the menu-driven
environments usually do not provide enough means for dynamic documentation.

There should be detailed mechanisms to access the data in various situations.
Interactive display of the data is useful for browsing and searching, but the errors
should be corrected in a way that also documents the corrections. Otherwise the
corrections could be forgotten, when certain steps of the process have to be repeated.
A typical situation might be that the original data are modified or even replaced,
and the operations using the data are repeated. Manual corrections could be difficult
and frustrating to repeat. They would slow down the working process and probably
also introduce new errors.

Automatic documentation means that the software environment leaves useful
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traces without a continuous need to document the working process manually. For
example, it is necessary to have good means of naming different objects, such as vari-
ables in the data, or row and column labels in the matrices. However, cooperation
between the environment and the user is needed, since it is also required that the
user actually gives describing names. If the environment provides the means, and
the user takes advantage of them, it is possible to achieve automatic documentation
in subsequent operations.

Another way to support automatic documentation is that the operations of the
environment are self-documenting as such. Writing too many comments or notes to
explain the steps of the working process is not reasonable. It could even be worse
than no comments, especially if the code or data are modified but the comments are
not updated accordingly.

4 Introduction to Survo environment

In this paper, we display examples of working processes and documentation in Survo
environment, created in [18]. The approach of Survo differs considerably from the
main-stream software packages. Despite of its long history beginning from the 1960s,
Survo—at least its recent development—is not widely known. Therefore we first
review the fundamental features of Survo.

The current version of Survo has emerged in several phases from a statistical
programming language SURVO 66 [1] leading to the creation of SURVO 76, one
of the first interactive statistical programs [10] and further, via SURVO 84 [13] to
SURVO MM, a general environment for creating and processing text and numerical
data [21].

Survo supports the documentation of the working process by its editorial inter-
face [11, 12, 14], which replaced the menu-based interface of SURVO 76 in 1979.
Editorial interface is a distinguishing construct, in which a special text editor takes
care of both input and output of operations related to statistical analysis, matrix
and other computations, according to the needs of the user. The operations, ex-
pressions, and links activated within the text, possibly producing output back in
the editor, can be commented inherently in free format. The outputs in turn can
be edited, formatted, highlighted, commented, printed, and used as input for other
operations.

The PRINT operation of Survo takes advantage of the editorial interface by user-
definable keywords, control characters, and so-called shadow characters, and gives
its output in PostScript format with CMYK colors [15]. The same technique of
printing multipage documents on paper is used to create documents in any structural
language, such as LATEX or HTML. The editorial interface of Survo also enables
fruitful cooperation with other programs, such as R [23]. There is even a specialized,
user-friendly frontend, which combines the best properties of R and Survo.

In addition to the editorial interface, SURVO MM includes selected elements
of the graphical user interface. For example, the statistical and other graphs are
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by default plotted as metafiles and displayed in their own graphics windows. The
rotations in factor analysis can be performed in an interactive graphics window as
a sequence of two-dimensional rotations.

The matrix operations of Survo are carried out by a matrix interpreter, which
is closely integrated in the statistical, graphical, and other operations of the system
through the editorial interface and the data and matrix structures [18, pp. 360–392].
Features of the matrix interpreter, such as automatically inherited row and column
labels of the matrix objects, support the documentation of the working process.

Mustonen [20] has demonstrated matrix computations in Survo, beginning from
elementary operations and extending to advanced applications and programming.
The data sets and sucros (or Survo macros [16]) utilized in the paper are included in
the distribution package of Survo. Obviously, this idea is equivalent to the principles
that have been recently termed reproducible research [7], since the accompanying
data sets and sucros allow the user to directly (or even automatically) reproduce the
results and employ the methods that are presented in the paper. The user may also
freely modify the premises and make alternative analyses and simulations using the
ready-made working schemes provided in the saved Survo jobs.

Reproducibility does not depend on whether we are working with matrices or not,
as the common factor of all activities in Survo is the editorial interface. Working
in Survo typically results in saved jobs or documents that not only give detailed
descriptions of the working processes but also facilitate repeating the processes more
or less automatically. Hence, it can be said that the idea of reproducible research has
been a regular way of working in Survo since the invention of the editorial interface
in 1979 [11].

The core structures of Survo have not been modified since 1985, when SURVO
84C, the first version of Survo programmed in C language, was released. Its pro-
gramming libraries, including a set of matrix functions have been described in [17]
with the details of the data and matrix structures. The libraries are updated syn-
chronously along the system development, and they are freely available. Survo is a
modular system which can be extended without limits [17].

The interaction between the community of Survo users and the developers has
been rewarding both for the users and the developers [18, p. iii–iv]. The developers
appreciate the feedback and suggestions, while the users appreciate the continuous
development process. New versions of SURVO MM are released frequently, bring-
ing new functions and operations available. However, because of the continuous
development process, the concept of version is not very significant. According to
one of the major development principles of Survo, new functions are added to the
system in a way that the existing ones are not changed, since that could potentially
cause harm for any user-defined applications relying on a particular function or its
output. By adding new options, the functions can still be extended without limits
and without disturbing existing usage.

Applying the above principle has guaranteed a full backward compatibility be-
tween the versions of Survo based on the editorial interface [21]. Therefore, the user
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never needs to re-learn how to use Survo. The interface is the same, although the
technical environment, such as the operating system has changed and might change
again. In our terms, Survo is an environment where the traces left behind can be
retraced also in the future.

A traditional research paper can not give a true picture of any dynamic contents,
but hopefully the following examples will provide an idea of the documentation
possibilities in the Survo environment.

5 Factor analysis and false assumptions

In the following we demonstrate some practices of leaving useful traces when working
with matrices and certain multivariate statistical analyses using Survo, especially
its matrix interpreter.

5.1 Background of misconceptions

We are going to revisit one of the experiments on factor analysis carried out in [5, 6]
during the 1970s. Francis claimed factor analysis to be “the most misunderstood
and misapplied statistical procedure” [6, p. 9]. Francis’ findings are summarized
by Seber in [24, pp. 222–235] in his classic book Multivariate Observations . Before
turning to a particular example, we briefly review some historical background and
facts on factor analysis.

Factor analysis was originally invented in 1904 by Spearman [25], and developed
further both by psychologists and statisticians. It has been said that “factor analysis
was born before its time, and had to mark time until the technology caught up” [3,
pp. 216–217]. At the time of Francis’ experiments, factor analysis was commonly
criticized by statisticians, although Anderson and Rubin [2] had established the
statistical properties of the method, and Lawley and Maxwell [8] showed factor
analysis to be a statistical method with a proper maximum likelihood estimation.

The mistrust in factor analysis has persistently been present in the statistical
literature. In their introductory book of multivariate analysis, Chatfield and Collins
[4, pp. 88–89] have given a list of drawbacks of the method recommending that
“factor analysis should not be used in most practical situations”. However, this
mistrust is mainly caused by misconceptions.

Mustonen [19, pp. 106–112] has examined Francis’ experiments and discussed
Seber’s conclusions, one of them being: “In conclusion, it must be stated that if
factor analysis is carried out, then the results must be interpreted with extreme
caution.” [24, p. 235]. But, as Mustonen [19, p. 106] reminds, this applies similarly
to results of any statistical method.

Seber [24, p. 235] continues: “Even if the postulated model is true—and this is
a very strong assumption—the chance of its recovery by present methods does not
seem very great.” This conclusion leaves room for further thoughts. The problem
is that the conclusion is based on false assumptions: Francis had believed that
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the given factor pattern would represent a simple structure [28] which should be
reproduced by factor analysis. However, the structure is not simple in this sense,
which makes it quite impossible to reproduce by standard methods [19, p. 110].

5.2 Francis’ experiment revisited

One of the original factor patterns of Francis [5] is given here as a matrix consisting
of loadings of three common factors F1, F2, and F3, and the standard deviations of
the unique factors PSI:

MATRIX FRANCISV

Factor matrix from Francis (1973), quoted by Seber (1984).

MODEL_V

/// F1 F2 F3 PSI

X1 10 7 4 15

X2 10 7 4 15

X3 10 7 4 15

X4 10 7 4 15

X5 10 7 0 15

X6 10 7 0 20

X7 10 7 0 20

X8 10 0 0 20

X9 10 0 0 20

X10 10 0 0 20

The matrix FRANCISV is written in the Survo editor. The meta information and
documentation around the numerical elements consist of 1) general comments, in-
cluding the internal name of the matrix, 2) row labels, and 3) column labels. The
structure would also allow rowwise comments, which are typically used in vectors
giving some scalar results e.g.in regression analysis. All information is included in
the matrix object when it is saved as a matrix file FRANCISV.MAT in the current
working directory. In subsequent operations, the matrix is referred to by using this
external name. The internal name of the matrix will be updated automatically by
each matrix operation.

By the following commands the matrix FRANCISV is saved, and two sub-matrices
(F0 and PSI) are extracted. Comments may be written all around the commands,
even on the same line when separated with an isolated slash. They are ignored
by the interpreter (the MAT commands), but they might be valuable for the user in
retracing the steps of the work in the future.

MAT SAVE FRANCISV

MAT F0!=FRANCISV(*,F1:F3) / F0 = original factor matrix (the loadings)

MAT PSI!=DV(FRANCISV(*,PSI)) / Diagonal matrix of the column Vector PSI
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Next, the extracted matrices are used to form the variance–covariance matrix of the
variables according to the basic equation of factor analysis. Scaling by the standard
deviations forms the corresponding correlation matrix and the scaled factor matrix:

MAT S=F0*F0’+PSI^2 / S = covariance matrix

MAT D=DIAG(S)^(-0.5)

MAT R=D*S*D / R = correlation matrix

MAT F=D*F0 / F = scaled factor matrix

We take a look at the resulting factor matrix using the sucro SUM2, which computes
the sums of squares by rows and columns of the matrix given as the first parameter.
The second parameter ##.### gives the desired precision of the output:

/SUM2 F ##.###

MATRIX SUM2

F_with_sums_of_squares_by_rows_and_columns

/// F1 F2 F3 Sumsqr

X1 0.506 0.354 0.203 0.423

X2 0.506 0.354 0.203 0.423

X3 0.506 0.354 0.203 0.423

X4 0.506 0.354 0.203 0.423

X5 0.517 0.362 0.000 0.398

X6 0.427 0.299 0.000 0.271

X7 0.427 0.299 0.000 0.271

X8 0.447 0.000 0.000 0.200

X9 0.447 0.000 0.000 0.200

X10 0.447 0.000 0.000 0.200

Sumsqr 2.257 0.812 0.164 3.234

The columnwise sums of the squares of the factor loadings reveal that the three-
dimensional factor structure is questionable. At least the third factor is very weak.
The communalities (the rowwise sums of the squares of the loadings) are also poor.
All the largest loadings are on the first factor.

It can be inferred that Francis’ factor pattern does not conform to the require-
ments of the simple structure [5, 28], and thus it is a bit useless to continue further.
However, for the sake of demonstration, we continue and follow the steps of Francis
[5] trying to reproduce the result by factor analysis.

First, we examine the correlation matrix R by loading it in the edit field. The
parameter CUR+1 gives the beginning line for the output, relative to the line that is
activated:

MAT LOAD R #.### CUR+1

MATRIX R

DIAG(F0*F0’+PSI^2)^(-0.5)*(F0*F0’+PSI^2)*DIAG(F0*F0’+PSI^2)^(-0.5)
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/// X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

X1 1.000 0.423 0.423 0.423 0.390 0.322 0.322 0.226 0.226 0.226

X2 0.423 1.000 0.423 0.423 0.390 0.322 0.322 0.226 0.226 0.226

X3 0.423 0.423 1.000 0.423 0.390 0.322 0.322 0.226 0.226 0.226

X4 0.423 0.423 0.423 1.000 0.390 0.322 0.322 0.226 0.226 0.226

X5 0.390 0.390 0.390 0.390 1.000 0.329 0.329 0.231 0.231 0.231

X6 0.322 0.322 0.322 0.322 0.329 1.000 0.271 0.191 0.191 0.191

X7 0.322 0.322 0.322 0.322 0.329 0.271 1.000 0.191 0.191 0.191

X8 0.226 0.226 0.226 0.226 0.231 0.191 0.191 1.000 0.200 0.200

X9 0.226 0.226 0.226 0.226 0.231 0.191 0.191 0.200 1.000 0.200

X10 0.226 0.226 0.226 0.226 0.231 0.191 0.191 0.200 0.200 1.000

The internal name of the matrix tells about the history of the matrix. Here, it shows
exactly how the matrix R was created from F0 and PSI. As a side result of those
operations, the row labels of the factor matrix are inherited to both row and column
labels of the correlation matrix.

We compute the spectral decomposition of the matrix R to investigate the eigen-
values. They are saved as a column vector L, which we load in the edit field in
transposed form:

MAT SPECTRAL DECOMPOSITION OF R TO S,L / (S includes the eigenvectors)

MAT LOAD L’ #.### CUR+1

MATRIX L’

L(CORR)’

/// ev1 ev2 ev3 ev4 ev5 ev6 ev7 ev8 ev9 ev10

eigenval 3.632 0.956 0.800 0.800 0.732 0.729 0.622 0.577 0.577 0.577

The matrix R is evidently positive definite, but the dimensionality is difficult to
infer, although the first eigenvalue is clearly greater than the others. Following the
experiments of Francis [5], we compute the maximum likelihood factor analysis of
three factors, using the above correlation matrix, which corresponds to using an
infinite sample size.

The matrix R is used as input to the FACTA module, which gives its output only
in the matrix file FACT.M, since no line is given the command. The second parameter
gives the number of factors. We check the output by /SUM2, and notice again that
the only reasonable factor is the first one:

FACTA R,3 / default method is maximum likelihood

/SUM2 FACT.M ##.###

MATRIX SUM2

FACT.M_with_sums_of_squares_by_rows_and_columns

/// F1 F2 F3 Sumsqr

X1 0.643 -0.080 -0.051 0.423

X2 0.643 -0.080 -0.051 0.423
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X3 0.643 -0.080 -0.051 0.423

X4 0.643 -0.080 -0.051 0.423

X5 0.618 0.010 0.129 0.398

X6 0.510 0.008 0.106 0.271

X7 0.510 0.008 0.106 0.271

X8 0.378 0.236 -0.037 0.200

X9 0.378 0.236 -0.037 0.200

X10 0.378 0.236 -0.037 0.200

Sumsqr 2.987 0.192 0.054 3.234

The factor structure may seem as more complicated than the original, but a suit-
able rotation to make the structures identical could be found by using symmetric
transformation analysis in [9], a practical method for comparison of factor structures
based on singular value decomposition ([19, pp. 95–105]). Francis’ experiments have
also been studied by Mustonen and Vehkalahti [22], with the focus on simulation
and rotation methods.

5.3 Assessing structural validity

Finally, we would like to introduce an additional point of view to the same problem.
It is based on working with measurement models and measurement scales.

A general framework for modeling the measurement and assessing the quality of
multivariate measurement scales was introduced in [27, 29, 26]. In the following, we
examine the structural validity of the factor model in Francis’ [5] experiments.

We begin by giving the matrices names that correspond with the concepts of the
measurement framework:

MAT B=FACT.M / new name for the ML factor matrix computed above

MAT NAME B AS ML / change also the internal name to "ML"

MAT A=B / factor images (scales corresponding to the factors)

MAT NAME R AS CORR / shorten the name (wiping out the previous history)

Now, the matrix B represents B ∈ R10×3, which specifies the relationship between the
measured variables x = (x1, . . . , x10)

′ and the true scores (or factors) τ = (τ1, τ2, τ3)
′

[27, Eq. 2.1].
Correspondingly, the matrix A represents A ∈ R10×3, which gives the weights for

the measurement scales u = A′x [27, Eq. 2.3]. The particular scales with A = B
are called factor images [27, Dfn. 2].

The structural validity of the model can be assessed by the reliabilities of the fac-
tor images. In general form, the reliability matrix is obtained by ρu = diag(A′BΦB′A)×
[diag(A′ΣA)]−1, where Φ = Cov(τ ) and Σ = Cov(x) [27, Eq. 2.11]. Here, we have
scaled the variables and use the correlations instead of covariances. As the factors
are orthogonal, Φ = I, an identity matrix. We are now ready to compute the
reliability matrix:



152 Kimmo Vehkalahti

MAT RHO=DIAG(A’*B*B’*A)*INV(DIAG(A’*R*A)) / reliability matrix (diagonal)

MAT RHO=VD(RHO)’ / make a row vector of the diagonal elements

MAT LOAD RHO ##.### CUR+2

MATRIX RHO

VD(DIAG(ML’*ML*ML’*ML)*INV(DIAG(ML’*CORR*ML)))’

/// F1 F2 F3

diag 0.824 0.225 0.081

Not surprisingly, the reliabilities of the factor images F2 and F3 indicate a serious
lack of the structural validity of the model. The factors F2 and F3 are totally
artificial, and the correct number of factors would obviously be one.

Again the row and column labels are inherited and the internal name of the
matrix updated automatically according to the preceding matrices and operations.
Hence, the matrix interpreter of Survo leaves useful traces that help the user to keep
on the track.
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