Spoilage bacteria in the feed of New Zealand dairy sheep

Alexis N Risson^{1, 2}, Anne Midwinter², Craig Prichard³, Gale Brightwell¹, Tanushree B Gupta¹

- 1 Food Assurance Team, AgResearch Palmerston North 2 Massey University Manawatu campus, School of Veterinary Science
- 3 Massey University Manawatu campus, School of Management

MILK

Dairy spoilage bacteria

- In a healthy animal, raw milk is considered sterile.
- Bacteria coming from the farm environment may contaminate the milk during milking & storage.
- Bacterial contamination can lead to off-odours or off-flavours and even early spoilage. → Quality decrease

Dairy spoilage bacteria and enzymes

Spores

- Dormant bacterial state, highly resistant
 - Able to grow alongside the processing chain
- Spoilage through production of enzymes after germination

Spoilage enzymes

- Mainly produced by bacteria growing during raw milk refrigeration and after pasteurization
- Able to degrade milk components (lipids, proteins)
 - Only partly inactivated by heat treatments when heat-resistant

Spoilage enzymes in dairy

<u>Lipases</u>

• Degrade the fat molecules in milk (lipids)

• Associated with off-odours and off-flavours

Proteases

- Degrade the proteins in milk (mainly caseins)
- Associated with curdling and off-flavours

ag research

Where it started : The dairy bovine study

- AgResearch-funded project
- Early spoilage of cow dairy products
- Characterization of New Zealand on-farm spores populations
- Linking on-farm and off-farm

Aerobic Dr Tanu Gupta Food assurance team, AgResearch

Identification of spore forming bacteria including SRC

EYA

CMGS

2d at 35°C

Anaerobic 7

80°C/15 min

The dairy sheep perspective

- Highly nutritious product
- No clear optimal farming guidelines
 - Desire to improve and maintain product quality
- Benefit to New Zealand's sheep milk international image

The team

Alexis Risson Food Assurance team AgResearch / Massey University PhD student

PhD supervisory panel

Dr Tanu Gupta Food Assurance team AgResearch Scientist

Dr Anne Midwinter School of Veterinary Sciences Massey University Scientist

Associate Prof Craig Prichard School of Management Massey University Coordinator, SheepMilkNZ

The PhD study

Goals:

- Characterize on-farm and raw milk spoilage bacteria populations
 - Investigate optimal farm practices and potential on-farm interventions to reduce raw milk's microbial load

The PhD study research plan: How?

Bi-annual sampling of dairy sheep farms

 → Ecological profiles of spoilage bacteria
 → Identify route of entry in the raw milk

- In-depths characterization of key spoilage bacteria
 → Resistance, biofilm formation, spoilage activity
- Preliminary studies to mitigate the impact of spoilage bacteria on milk quality

agrese

Sample processing: methodology

Non-spore-Spore-forming Mixing of 20 silage samples into an individual compositeforming Cold Moderate Hot • testelefativeeculturepeased or ocease repically Cold temperature temperature growing growing Shee Retoted ingsofe on Bloedso latesichment **Sheep Blood Sheep Blood Agar** (CDA) Agar (SBA) Agar (SBA) step plate plate Egg \ 2 3

	Spore-forming			Non-spore-forming
	Cold temperature- growing	Moderate temperature- growing	Hot temperature- growing	Cold-temperature growing
Bacteria/g of feed	35,000	1,500,000	25,000	650,000

-Moderate temperature-growing spore and cold growing non-spores had the highest numbers

Soewho'sithere?

Cold temperature growing		Psychrobacillus psychrodurans A totalBotchus isovateosaccharolyticus Paenibacillus xylanexedens Bacillus gibsonii Selection of relevanibisollus borealis 			
Moderate temperature • demissication us		Bacillus licheniformis Bacillus pumilus sing 16S rRNA sequen ges Mugacterin illus unique barcode Solibacillus silvestris			
	Sequence View Dotplot (Self) DNA Fold Chromatogram Text View Lineage Info				
Hot temp					
Anaero					
	MAAndre Man Man Mark Andre Color Man Andre Color Andre Mark Andre Color Man Mark Mark Mark Mark Mark Mark Mark Mark				
	CGATGASTIC TAAGTGTTAGGGGGTTTCCGCCCCTTAGTGCTG	AIGETAACGENTTAAGENETCEGEE TGIGGINGTAE GAELEGENAGGETGAACTEGAAGGAETGAEGGGAECEGEAEGAGGGGGGGGGG			

Lipase testing: Olive Oil -Rhodamine B Protease testing: Milk Agar

- <u>36% positive for protein-degrading activity</u>
 - <u>24% positive for lipid-degrading activity</u>

→ Mostly moderate- and cold-temperature growing bacteria

Protein-degrading Identification & spoilage potential Lipid-degrading

Cold temperature growing	Psychrobacillus psychrodurans Bacillus psychrosaccharolyticus Paenibacillus xylanexedens Bacillus gibsonii Paenibacillus borealis
Moderate temperature growing	Bacillus licheniformis Bacillus pumilus Bacillus aerophilus Solibacillus silvestris
Hot temperature growing	Thermoactinomyces vulgaris Geobacillus thermodenitrificans Geobacillus thermoglucosidasius
Anaerobically growing	Clostridium <mark>sporogenes</mark> Clostridium bifermentans Clostridium butyricum

• Identification of spoilage bacteria present in the feed

Most common:

Bacillus licheniformis, Thermoactinomyces vulgaris, Bacillus psychrosaccharolyticus, Bacillus pumilus, Clostrium sporogenes, Clostridium bifermentans

- A variety of different temperature-growing spores were isolated
- **Spoilage potential**: Lipid-degrading 26%

Protein-degrading 32%

 Feed could be introducing spoilage bacteria with potential to contaminate the raw milk and decrease its quality

What's coming next?

 Process the remaining samples: Bedding, Dairy effluents, Faeces, Pasture, Water, Milking cups & Raw milk: 50 samples/season

 \rightarrow Funding for a helper

• **Trace back raw milk contaminants** to the farm environment using DNA finger-printing techniques

• In-depths characterization of key spoilage bacteria

Acknowledgments

Many thanks to:

• My supervisors; Tanu, Anne and Craig

• AgResearch: Internal core funding for the PhD and infrastructures

- Food Assurance Team : Hopkirk Institute, Palmerston North
- Farmers for the help provided during samples collection
- Massey University

Thank ewe for your attention!

UNIVERSITY OF NEW ZEALAND