Does fermentation of sheep milk affect protein digestion & gut function differently from cow milk?

Dr Julie Dalziel, Senior Scientist Food Nutrition & Health Team Food & Bio-based Products Group

19 March 2019

Fermented foods for health

Milk is a nutritious protein source

During digestion milk proteins break down into smaller pieces (peptides) that can then be absorbed.

Peptides may influence gut function and health:

- bioactive actions on the GI tract or once absorbed
- gut microbiota in the large intestine

Gastrointestinal (GI) tract

Dairy proteins – cow & sheep

Composition	Cow	Sheep
Protein (%)	3.2	6.2
Fat (%)	3.5	7.9
Lactose (%)	4.7	4.9

Park et al., 2007, Small Ruminant Nutr 68:88-113.

Standardised to 3% protein

Intestinal function

Is fermented milk (yogurt) digested differently from milk?

Does this differ whether of sheep or cow orgin?

In vitro digestion

Stomach: acidic pH 3.0 pepsin enzyme

The gastrointestinal tract. Christos Georghiou/Shutterstock

In vitro digestion

Stomach: acidic pH 3.0 pepsin enzyme

Small intestine: neutral pH 7.0 pancreatin enzyme bile salts

The gastrointestinal tract. Christos Georghiou/Shutterstock

Hypothesis: That the abundance and variety of peptides released during *in vitro* digestion will differ between milk and yogurt.

Identify bioactive peptides

Bioactive peptides

Number of peptides (MW < 3kDa) that differed between milk and yogurt per species during *in vitro* digestion (Infogest static method*)

Digestion (min)	Cow	Sheep
Gastric 0	0	0
Gastric 10	47	27
Gastric 120	26	37
Intestinal 10	28	15
Intestinal 120	19	20

^{*} Minekus *et al.*, 2014 *Food Funct*, 5, 1113-1124.

Peptides

Regardless of species, a higher amount of specific bioactive peptides were released from <u>yogurt</u> than from milk during *in vitro* digestion, i.e. antihypertensives.

A higher proportion of <u>small</u> peptides were released from <u>sheep milk and yogurt</u> compared with those from cow.

GI tract

GI transit:Small and large intestine

Microbiota: Large intestine

The gastrointestinal tract. Christos Georghiou/Shutterstock

Intestinal function

Does fermentation of milk alter GI transit of contents?

Rats fed dairy-free diet for 2 weeks with 3% protein dairy drink

A. Baillie, AgResearch, Graphical abstract: Dalziel et al., 2018, J Funct Food 47, 116-26.

Sheep milk, sheep yogurt, cow milk, cow yogurt (n=12 per group)

GI transit in vivo

Fermentation did not alter transit of contents.

Stomach emptying was faster for sheep yogurt than for cow yogurt.

Colonic transit was faster for sheep milk & yogurt than for cow milk & yogurt.

The species differences were evident above any fermentation effect.

GI transit in vivo

Journal of Functional Foods 47 (2018) 116-126

Contents lists available at ScienceDirect

Journal of Functional Foods

Differential effects of sheep and cow skim milk before and after fermentation on gastrointestinal transit of solids in a rat model

J.E. Dalziel^{a,b,*}, G.A. Smolenski^c, C.M. McKenzie^d, S.R. Haines^e, L. Day^a

a Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand

^b Riddet Institute, Massey University, Palmerston North 4442, New Zealand

^c Proteins and Biomaterials Team, Food & Bio-based Products Group, AgResearch, Ruakura Research Centre, Hamilton 3240, New Zealand

^d Bioinformatics and Statistics, AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand

e Proteins and Biomaterials Team, Food & Bio-based Products Group, AgResearch, Lincoln Research Centre, Christchurch 8140, New Zealand

Intestinal function

Does fermentation alter GI transit of contents?

Does fermentation affect the gut microbiota?

Treated dairy drinks to deplete bacteria.

A. Baillie, AgResearch, Graphical abstract: Dalziel et al., 2018, J Funct Food 47, 116-26.

Gut microbiota

Fermentation of the milks had a greater effect on the gut microbiota than the animal species of origin.

In yogurt compared with milk fed animals:

Phylum level

- ↓ Firmicutes:Bacteroidetes ratio (↓ BMI)
- ↑ Proteobacteria, ↓ Actinobacteria

Genera level

- ↑ Phascolarctobacterium positive mood, SCFA butyrate
- ↑ Desulfovibrio sulfate-reducing bacteria

Gut microbiota

ORIGINAL RESEARCH

published: 06 March 2019 doi: 10.3389/fmicb.2019.00458

The Effects of Unfermented and Fermented Cow and Sheep Milk on the Gut Microbiota

Elizabeth A. Rettedal^{1,2*}, Eric Altermann^{1,2}, Nicole C. Roy^{1,2,3} and Julie E. Dalziel^{1,2}

¹ Food Nutrition & Health Team, AgResearch (Grasslands Research Centre), Palmerston North, New Zealand, ² Riddet Institute, Massey University, Palmerston North, New Zealand, ³ The High-Value Nutrition National Science Challenge, Palmerston North, New Zealand

Findings

- ↑ cardiovascular bioactives from yogurts than milks
- ↑ small peptides from sheep milk and yogurt than cow
- → suggests more bioactive functions to discover for sheep peptides

Fermentation had a greater influence on the composition of the gut microbiota than did milk species of origin

→ Some changes in the gut microbial communities associated with good health

Acknowledgements

Hanh Nguyen

Jess Gathercole

Elizabeth Rettedal

Eric Altermann

Stephen Haines

Carole Berry

Nicole Roy

Li Day

Catherine Stanton

Daragh Hill

Conor Tobin

AgResearch Strategic Science Investment Fund

